On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 279-287

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p=p(t)$ be a measurable function defined on $[0,1]$. If $p(t)$ is essentially bounded on $[0,1]$, denote by $\mathscr L^{p(t)}([0,1])$ the set of measurable functions $f$ defined on $[0,1]$ for which $\int_0^1|f(t)|^{p(t)}\,dt\infty$. The space $\mathscr L^{p(t)}([0,1])$ with $p(t)\geqslant1$ is a normed space with norm $$ \|f\|_p=\inf\biggl\{\alpha>0:\int\limits_0^1\bigg|\frac{f(t)}\alpha\bigg|^{p(t)}\,dt\leqslant1\biggr\}. $$ This paper examines the question of whether the Haar system is a basis in $\mathscr L^{p(t)}([0,1])$. Conditions that are in a certain sense definitive on the function $p(t)$ in order that the Haar system be a basis of $\mathscr L^{p(t)}([0,1])$ are obtained. The concept of a localization principle in the mean is introduced, and its connection with the space $\mathscr L^{p(t)}([0,1])$ is exhibited. Bibliography: 2 titles.
@article{SM_1987_58_1_a15,
     author = {I. I. Sharapudinov},
     title = {On the basis property of the {Haar} system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean},
     journal = {Sbornik. Mathematics},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a15/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 279
EP  - 287
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a15/
LA  - en
ID  - SM_1987_58_1_a15
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean
%J Sbornik. Mathematics
%D 1987
%P 279-287
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a15/
%G en
%F SM_1987_58_1_a15
I. I. Sharapudinov. On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 279-287. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a15/