Carleman estimates and inverse problems for second-order hyperbolic equations
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 267-277

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the problem of finding the time-independent coefficients of a second order hyperbolic equation from the Cauchy data at the initial moment and on a part of the lateral surface of a cylindrical domain. Estimates of Hörmander's Carleman type are obtained. On the basis of these estimates the uniqueness of the extension of the Cauchy data is proved, as well as the uniqueness of recovering the time-independent coefficients of hyperbolic equations. Bibliography: 9 titles.
@article{SM_1987_58_1_a14,
     author = {A. Khaidarov},
     title = {Carleman estimates and inverse problems for second-order hyperbolic equations},
     journal = {Sbornik. Mathematics},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/}
}
TY  - JOUR
AU  - A. Khaidarov
TI  - Carleman estimates and inverse problems for second-order hyperbolic equations
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 267
EP  - 277
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/
LA  - en
ID  - SM_1987_58_1_a14
ER  - 
%0 Journal Article
%A A. Khaidarov
%T Carleman estimates and inverse problems for second-order hyperbolic equations
%J Sbornik. Mathematics
%D 1987
%P 267-277
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/
%G en
%F SM_1987_58_1_a14
A. Khaidarov. Carleman estimates and inverse problems for second-order hyperbolic equations. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 267-277. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/