Carleman estimates and inverse problems for second-order hyperbolic equations
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 267-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers the problem of finding the time-independent coefficients of a second order hyperbolic equation from the Cauchy data at the initial moment and on a part of the lateral surface of a cylindrical domain. Estimates of Hörmander's Carleman type are obtained. On the basis of these estimates the uniqueness of the extension of the Cauchy data is proved, as well as the uniqueness of recovering the time-independent coefficients of hyperbolic equations. Bibliography: 9 titles.
@article{SM_1987_58_1_a14,
     author = {A. Khaidarov},
     title = {Carleman estimates and inverse problems for second-order hyperbolic equations},
     journal = {Sbornik. Mathematics},
     pages = {267--277},
     year = {1987},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/}
}
TY  - JOUR
AU  - A. Khaidarov
TI  - Carleman estimates and inverse problems for second-order hyperbolic equations
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 267
EP  - 277
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/
LA  - en
ID  - SM_1987_58_1_a14
ER  - 
%0 Journal Article
%A A. Khaidarov
%T Carleman estimates and inverse problems for second-order hyperbolic equations
%J Sbornik. Mathematics
%D 1987
%P 267-277
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/
%G en
%F SM_1987_58_1_a14
A. Khaidarov. Carleman estimates and inverse problems for second-order hyperbolic equations. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 267-277. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a14/

[1] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[2] Bukhgeim A. L., Uravneniya Volterra i obratnye zadachi, Nauka, Novosibirsk, 1983 | MR

[3] Teoriya i metody resheniya nekorrektno postavlennykh zadach i ikh prilozheniya, Tez. dokl. Vsesoyuznoi shkoly-seminara (Samarkand, 1983), Izd-vo VTs SO AN SSSR, Novosibirsk, 1983

[4] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[5] Murray A. C., Protter M. H., “Asymptotic behavior and Cauchy problem for ultrahyperbolic equations”, Indiana Univ. Math. J., 24:2 (1974), 115–131 | DOI | MR

[6] Isakov V. M., “O edinstvennosti prodolzheniya reshenii giperbolicheskikh uravnenii”, Matem. zametki, 32:1 (1982), 75–82 | MR | Zbl

[7] Khaidarov A., Karlemanovskie otsenki i teoremy edinstvennosti dlya koeffitsienta operatora $cu_{tt}-\Delta u$, Preprint VTs SO AN SSSR. 475, VTs SO AN SSSR, Novosibirsk, 1983 | MR

[8] Hadamard J., Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques, Hermann, Paris, 1932 | Zbl

[9] Kurant R., Uravneniya s chastnymi proizvedeniyami, Mir, M., 1963