Parametrix and asymptotics of the spectral function of differential operators in $\mathbf R^n$
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 245-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new formula is obtained for a global parametrix of the Cauchy problem for hyperbolic equations and systems which is an analogue of the representation of the Green function in terms of the spectral function of the corresponding steady-state operator. In the selfadjoint case this formula makes it possible to obtain a complete asymptotic expansion of the spectral function of elliptic operators in $\mathbf R^n$. Bibliography: 18 titles.
@article{SM_1987_58_1_a13,
     author = {B. R. Vainberg},
     title = {Parametrix and asymptotics of the spectral function of differential operators in~$\mathbf R^n$},
     journal = {Sbornik. Mathematics},
     pages = {245--265},
     year = {1987},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a13/}
}
TY  - JOUR
AU  - B. R. Vainberg
TI  - Parametrix and asymptotics of the spectral function of differential operators in $\mathbf R^n$
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 245
EP  - 265
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a13/
LA  - en
ID  - SM_1987_58_1_a13
ER  - 
%0 Journal Article
%A B. R. Vainberg
%T Parametrix and asymptotics of the spectral function of differential operators in $\mathbf R^n$
%J Sbornik. Mathematics
%D 1987
%P 245-265
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a13/
%G en
%F SM_1987_58_1_a13
B. R. Vainberg. Parametrix and asymptotics of the spectral function of differential operators in $\mathbf R^n$. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 245-265. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a13/

[1] Khërmander L., “Spektralnaya funktsiya ellipticheskogo operatora”, Matematika (sb. perevodov), 13:6 (1969), 114–137

[2] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskie priblizheniya dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[3] Mischenko A. S., Sternin B. Yu., Shatalov V. E., Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[4] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982 | MR | Zbl

[5] Arsenev A. A., “Asimptotika spektralnoi funktsii uravneniya Shredingera”, ZhVM i MF, 7 (1967), 507–518 | MR

[6] Babich V. M., “O korotkovolnovoi asimptotike resheniya zadachi o tochechnom istochnike v neodnorodnoi srede”, ZhVM i MF, 5:5 (1965), 949–951 | Zbl

[7] Babich V. M., “Metod Adamara i asimptotika spektralnoi funktsii differentsialnogo operatora vtorogo poryadka”, Matem. zametki, 28:5 (1980), 689–694 | MR | Zbl

[8] Buslaev V. S., “Rasseyannye ploskie volny, spektralnye asimptotiki i formuly sleda vo vneshnikh zadachakh”, DAN SSSR, 197:5 (1971), 999–1002 | MR | Zbl

[9] Buslaev V. S., “Ob asimptoticheskom povedenii spektralnykh kharakteristik vneshnikh zadach dlya operatora Shredingera”, Izv. AN SSSR. Ser. matem., 39 (1975), 149–235 | MR | Zbl

[10] Vainberg B. R., “Polnoe asimptoticheskoe razlozhenie spektralnoi funktsii ellipticheskikh operatorov v $\mathbf{R}^n$”, Vestn. MGU. Ser. 1. Matem., mekhanika, 1983, no. 3, 29–36 | MR | Zbl

[11] Vainberg B. R., “O parametrikse i asimptotike spektralnoi funktsii differentsialnykh operatorov v $\mathbf{R}^n$”, DAN SSSR, 282:2 (1985), 265–269 | MR | Zbl

[12] Vainberg B. R., “Globalnyi parametriks zadachi Koshi dlya giperbolicheskikh uravnenii”, UMN, 39:4 (1984), 101

[13] Ivrii V. I., Shubin M. A., “Ob asimptotike funktsii spektralnogo sdviga”, DAN SSSR, 263:2 (1982), 283–284 | MR | Zbl

[14] Kucherenko V. V., “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR

[15] Majda A., Ralston J., “An analogue of Weyl's formula for unbounded domains, I, II, III”, Duke Math. J., 45 (1978), 183–196, 513–536 ; 46 (1979), 725–731 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Petkov B. M., Popov G. S., “Asymptotic behaviour of the scattering phase for non trapping abstacles”, Ann. Inst. Fourier, 32:3 (1982), 111–150 | MR

[17] Popov G. S., Shubin M. A., “Asimptoticheskoe razlozhenie spektralnoi funktsii dlya ellipticheskikh operatorov vtorogo poryadka v $\mathbf{R}^n$”, Funktsion. analiz i ego pril., 17:3 (1983), 37–45 | MR | Zbl

[18] Popov G. S., “Spectral asymptotic for second order differential operator”, Dokl. Bolg. AN, 36:4 (1983), 413–415 | MR | Zbl