@article{SM_1987_58_1_a13,
author = {B. R. Vainberg},
title = {Parametrix and asymptotics of the spectral function of differential operators in~$\mathbf R^n$},
journal = {Sbornik. Mathematics},
pages = {245--265},
year = {1987},
volume = {58},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a13/}
}
B. R. Vainberg. Parametrix and asymptotics of the spectral function of differential operators in $\mathbf R^n$. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 245-265. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a13/
[1] Khërmander L., “Spektralnaya funktsiya ellipticheskogo operatora”, Matematika (sb. perevodov), 13:6 (1969), 114–137
[2] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskie priblizheniya dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[3] Mischenko A. S., Sternin B. Yu., Shatalov V. E., Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR
[4] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982 | MR | Zbl
[5] Arsenev A. A., “Asimptotika spektralnoi funktsii uravneniya Shredingera”, ZhVM i MF, 7 (1967), 507–518 | MR
[6] Babich V. M., “O korotkovolnovoi asimptotike resheniya zadachi o tochechnom istochnike v neodnorodnoi srede”, ZhVM i MF, 5:5 (1965), 949–951 | Zbl
[7] Babich V. M., “Metod Adamara i asimptotika spektralnoi funktsii differentsialnogo operatora vtorogo poryadka”, Matem. zametki, 28:5 (1980), 689–694 | MR | Zbl
[8] Buslaev V. S., “Rasseyannye ploskie volny, spektralnye asimptotiki i formuly sleda vo vneshnikh zadachakh”, DAN SSSR, 197:5 (1971), 999–1002 | MR | Zbl
[9] Buslaev V. S., “Ob asimptoticheskom povedenii spektralnykh kharakteristik vneshnikh zadach dlya operatora Shredingera”, Izv. AN SSSR. Ser. matem., 39 (1975), 149–235 | MR | Zbl
[10] Vainberg B. R., “Polnoe asimptoticheskoe razlozhenie spektralnoi funktsii ellipticheskikh operatorov v $\mathbf{R}^n$”, Vestn. MGU. Ser. 1. Matem., mekhanika, 1983, no. 3, 29–36 | MR | Zbl
[11] Vainberg B. R., “O parametrikse i asimptotike spektralnoi funktsii differentsialnykh operatorov v $\mathbf{R}^n$”, DAN SSSR, 282:2 (1985), 265–269 | MR | Zbl
[12] Vainberg B. R., “Globalnyi parametriks zadachi Koshi dlya giperbolicheskikh uravnenii”, UMN, 39:4 (1984), 101
[13] Ivrii V. I., Shubin M. A., “Ob asimptotike funktsii spektralnogo sdviga”, DAN SSSR, 263:2 (1982), 283–284 | MR | Zbl
[14] Kucherenko V. V., “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR
[15] Majda A., Ralston J., “An analogue of Weyl's formula for unbounded domains, I, II, III”, Duke Math. J., 45 (1978), 183–196, 513–536 ; 46 (1979), 725–731 | DOI | MR | Zbl | DOI | MR | Zbl
[16] Petkov B. M., Popov G. S., “Asymptotic behaviour of the scattering phase for non trapping abstacles”, Ann. Inst. Fourier, 32:3 (1982), 111–150 | MR
[17] Popov G. S., Shubin M. A., “Asimptoticheskoe razlozhenie spektralnoi funktsii dlya ellipticheskikh operatorov vtorogo poryadka v $\mathbf{R}^n$”, Funktsion. analiz i ego pril., 17:3 (1983), 37–45 | MR | Zbl
[18] Popov G. S., “Spectral asymptotic for second order differential operator”, Dokl. Bolg. AN, 36:4 (1983), 413–415 | MR | Zbl