Capacity of condensers and spatial mappings quasiconformal in the mean
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 185-205

Voir la notice de l'article provenant de la source Math-Net.Ru

With the concept of the variational $p$-capacity of a condenser as a starting point, the mean inner and outer deviations are defined for homeomorphic mappings of bounded domains in $R^n$, $n\geqslant3$. Analytic expressions which are integral means of the usual analytic deviations of a homeomorphism are established for such deviations. Various equivalent geometric and analytic definitions are given for mappings quasiconformal in the mean and for quasiconformal mappings. An estimate is determined for the distortion of Euclidean distances under mappings quasiconformal in the mean and other mappings. Bibliography: 14 titles.
@article{SM_1987_58_1_a10,
     author = {V. I. Kruglikov},
     title = {Capacity of condensers and spatial mappings quasiconformal in the mean},
     journal = {Sbornik. Mathematics},
     pages = {185--205},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/}
}
TY  - JOUR
AU  - V. I. Kruglikov
TI  - Capacity of condensers and spatial mappings quasiconformal in the mean
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 185
EP  - 205
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/
LA  - en
ID  - SM_1987_58_1_a10
ER  - 
%0 Journal Article
%A V. I. Kruglikov
%T Capacity of condensers and spatial mappings quasiconformal in the mean
%J Sbornik. Mathematics
%D 1987
%P 185-205
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/
%G en
%F SM_1987_58_1_a10
V. I. Kruglikov. Capacity of condensers and spatial mappings quasiconformal in the mean. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 185-205. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/