Capacity of condensers and spatial mappings quasiconformal in the mean
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 185-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the concept of the variational $p$-capacity of a condenser as a starting point, the mean inner and outer deviations are defined for homeomorphic mappings of bounded domains in $R^n$, $n\geqslant3$. Analytic expressions which are integral means of the usual analytic deviations of a homeomorphism are established for such deviations. Various equivalent geometric and analytic definitions are given for mappings quasiconformal in the mean and for quasiconformal mappings. An estimate is determined for the distortion of Euclidean distances under mappings quasiconformal in the mean and other mappings. Bibliography: 14 titles.
@article{SM_1987_58_1_a10,
     author = {V. I. Kruglikov},
     title = {Capacity of condensers and spatial mappings quasiconformal in the mean},
     journal = {Sbornik. Mathematics},
     pages = {185--205},
     year = {1987},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/}
}
TY  - JOUR
AU  - V. I. Kruglikov
TI  - Capacity of condensers and spatial mappings quasiconformal in the mean
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 185
EP  - 205
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/
LA  - en
ID  - SM_1987_58_1_a10
ER  - 
%0 Journal Article
%A V. I. Kruglikov
%T Capacity of condensers and spatial mappings quasiconformal in the mean
%J Sbornik. Mathematics
%D 1987
%P 185-205
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/
%G en
%F SM_1987_58_1_a10
V. I. Kruglikov. Capacity of condensers and spatial mappings quasiconformal in the mean. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 185-205. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a10/

[1] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[2] Kruglikov V. I., Emkosti i otobrazheniya, kvazikonformnye v srednem, Rukopis dep. v UkrNIINTI, No 1155 Uk-D83, Izd-vo Donets. un-ta, Donetsk, 1983

[3] Kruglikov V. I., Paikov V. I., Nekotorye geometricheskie svoistva otobrazhenii s iskazheniem, ogranichennym v srednem, Rukopis dep. v VINITI, No 4747–82 Dep., Izd-vo Donets. un-ta, Donetsk, 1982

[4] Krushkal S. L., “Ob absolyutnoi nepreryvnosti i differentsiruemosti nekotorykh klassov otobrazhenii mnogomernykh oblastei”, Sib. matem. zhurn., 6:3 (1965), 692–696 | Zbl

[5] Mazya V. G., “O nekotorykh integralnykh neravenstvakh dlya funktsii mnogikh peremennykh”, Problemy matematicheskogo analiza, 3, LGU, L., 1973, 33–68

[6] Reshetnyak Yu. G., “Nekotorye geometricheskie svoistva funktsii i otobrazhenii s obobschennymi roizvodnymi”, Sib. matem. zhurn., 7:5 (1966), 886–919 | Zbl

[7] Saks S., Teoriya integrala, IL, M., 1949

[8] Suvorov G. D., Semeistva ploskikh topologicheskikh otobrazhenii, SO AN SSSR, Novosibirsk, 1965 | MR

[9] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983

[10] Gehring F. W., “Quasiconformal mappings in $R^n$”, Lectures on quasiconformat mappings, Univ. Maryland, Maryland, 1975, 44–110 | MR

[11] Lelong-Ferrand J., Representation conforme et transformations a integrate de Dirichlet bornee, Gauthier–Villars, Paris, 1955 | MR | Zbl

[12] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sei. Fenn., Ser. AI, 1969, no. 448, 1–40 | MR

[13] Rado T., Reichelderfer P. V., Continuous transformations in analysis, Springer-Verlag, Berlin, 1955 | MR | Zbl

[14] Väisälä J., Lectures on $n$-dimensional qusiconformal mappings, Springer-Verlag, Berlin, 1971 | MR | Zbl