On reduction of a smooth system linear in the control
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 15-30
Voir la notice de l'article provenant de la source Math-Net.Ru
A method is presented for reducing a smooth system linear in the control on an $n$-dimensional manifold $M$ to a nonlinear system on an $(n-1)$-dimensional manifold. This reduction is used to obtain sufficient conditions for a high order of local controllability of the system, and the problem of a time-optimal control of the angular momentum of a rotating rigid body is investigated.
Bibliography: 7 titles.
@article{SM_1987_58_1_a1,
author = {A. A. Agrachev and A. V. Sarychev},
title = {On reduction of a smooth system linear in the control},
journal = {Sbornik. Mathematics},
pages = {15--30},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a1/}
}
A. A. Agrachev; A. V. Sarychev. On reduction of a smooth system linear in the control. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 15-30. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a1/