On reduction of a smooth system linear in the control
Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 15-30

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is presented for reducing a smooth system linear in the control on an $n$-dimensional manifold $M$ to a nonlinear system on an $(n-1)$-dimensional manifold. This reduction is used to obtain sufficient conditions for a high order of local controllability of the system, and the problem of a time-optimal control of the angular momentum of a rotating rigid body is investigated. Bibliography: 7 titles.
@article{SM_1987_58_1_a1,
     author = {A. A. Agrachev and A. V. Sarychev},
     title = {On reduction of a smooth system linear in the control},
     journal = {Sbornik. Mathematics},
     pages = {15--30},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_58_1_a1/}
}
TY  - JOUR
AU  - A. A. Agrachev
AU  - A. V. Sarychev
TI  - On reduction of a smooth system linear in the control
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 15
EP  - 30
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_58_1_a1/
LA  - en
ID  - SM_1987_58_1_a1
ER  - 
%0 Journal Article
%A A. A. Agrachev
%A A. V. Sarychev
%T On reduction of a smooth system linear in the control
%J Sbornik. Mathematics
%D 1987
%P 15-30
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_58_1_a1/
%G en
%F SM_1987_58_1_a1
A. A. Agrachev; A. V. Sarychev. On reduction of a smooth system linear in the control. Sbornik. Mathematics, Tome 58 (1987) no. 1, pp. 15-30. http://geodesic.mathdoc.fr/item/SM_1987_58_1_a1/