A general existence theorem for multidimensional extremal problems
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 455-461 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general existence theorem is proved by multidimensional extremal problems, and it is then used to prove existence theorems for other extremal problems. Bibliography: 5 titles.
@article{SM_1987_57_2_a9,
     author = {F. V. Guseinov},
     title = {A~general existence theorem for multidimensional extremal problems},
     journal = {Sbornik. Mathematics},
     pages = {455--461},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a9/}
}
TY  - JOUR
AU  - F. V. Guseinov
TI  - A general existence theorem for multidimensional extremal problems
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 455
EP  - 461
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a9/
LA  - en
ID  - SM_1987_57_2_a9
ER  - 
%0 Journal Article
%A F. V. Guseinov
%T A general existence theorem for multidimensional extremal problems
%J Sbornik. Mathematics
%D 1987
%P 455-461
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a9/
%G en
%F SM_1987_57_2_a9
F. V. Guseinov. A general existence theorem for multidimensional extremal problems. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 455-461. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a9/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[2] Guseinov F. V., Kharakterizatsiya konechnomernykh podprostranstv banakhovykh prostranstv $C$ i $L_{\infty}$, Rukopis dep. VINITI, No 2509-84 Dep.

[3] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR