On asymptotically monogenic bounded functions
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 449-454

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. Suppose that the function $f(z)$ is bounded in a region $D$ and is asymptotically monogenic at all points of $D\setminus e,$ where the set $e$ is not more than countable. Then $f(z)$ can be redefined on $e$ in such a way that it becomes holomorphic on $D$. This theorem solves positively a problem of Men'shov on holomorphicity of asymptotically monogenic bounded functions. Bibliography: 2 titles.
@article{SM_1987_57_2_a8,
     author = {D. S. Telyakovskii},
     title = {On asymptotically monogenic bounded functions},
     journal = {Sbornik. Mathematics},
     pages = {449--454},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a8/}
}
TY  - JOUR
AU  - D. S. Telyakovskii
TI  - On asymptotically monogenic bounded functions
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 449
EP  - 454
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a8/
LA  - en
ID  - SM_1987_57_2_a8
ER  - 
%0 Journal Article
%A D. S. Telyakovskii
%T On asymptotically monogenic bounded functions
%J Sbornik. Mathematics
%D 1987
%P 449-454
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a8/
%G en
%F SM_1987_57_2_a8
D. S. Telyakovskii. On asymptotically monogenic bounded functions. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 449-454. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a8/