On subgroups of infinite finitely generated $p$-groups
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 437-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete description is given of the abelian subgroups of an arbitrary Alëshin $p$-group (RZh. Mat., 1972, 8A271; 1983, 1A189K § 23). They are precisely the direct sums of at most countably many cyclic $p$-groups (Theorem 2). For $p>2$, a description is given of the subgroups acting nontrivially on sequences with given initial segment only (Theorems 1 and 1$'$), whence it follows in particular that nontrivial normal subgroups are of finite index (Algebra i Logika, 1983, V. 22, No 5, P. 584–589). The centralizer of every element of every Alëshin group is infinite (Theorem 3). An infinite subgroup generated by two conjugate elements of prime order is constructed in an Alëshin group, thus answering in the negative problem 6.58a) of the Kourovka Notebook (RZh. Mat., 1984, 2A156K), due to V. P. Shunkov. Figures: 1. Bibliography: 9 titles.
@article{SM_1987_57_2_a7,
     author = {A. V. Rozhkov},
     title = {On subgroups of infinite finitely generated $p$-groups},
     journal = {Sbornik. Mathematics},
     pages = {437--448},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a7/}
}
TY  - JOUR
AU  - A. V. Rozhkov
TI  - On subgroups of infinite finitely generated $p$-groups
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 437
EP  - 448
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a7/
LA  - en
ID  - SM_1987_57_2_a7
ER  - 
%0 Journal Article
%A A. V. Rozhkov
%T On subgroups of infinite finitely generated $p$-groups
%J Sbornik. Mathematics
%D 1987
%P 437-448
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a7/
%G en
%F SM_1987_57_2_a7
A. V. Rozhkov. On subgroups of infinite finitely generated $p$-groups. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 437-448. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a7/

[1] Alëshin S. V., “Konechnye avtomaty i problema Bernsaida o periodicheskikh gruppakh”, Matem. zametki, 11:3 (1972), 319–328

[2] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funktsion. analiz i ego pril., 14:1 (1980), 53–54 | MR | Zbl

[3] Merzlyakov Yu. I., “O beskonechnykh konechno-porozhdennykh periodicheskikh gruppakh”, DAN SSSR, 268:4 (1983), 803–805 | MR | Zbl

[4] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[5] Kourovskaya tetrad, 9-e izd., Novosibirsk, 1984

[6] Rozhkov A. V., “Dva svoistva $p$-grupp Alëshina”, 9-i Vsesoyuzn. simp. po teorii grupp, M., 1984, 55–56

[7] Shunkov V. P., “O dostatochnykh priznakakh suschestvovaniya v gruppe beskonechnykh lokalno konechnykh $p$-grupp”, Algebra i logika, 15:6 (1976), 716–737 | MR | Zbl

[8] Timofeenko A. V., “O gruppakh tipa Alëshina i Goloda”, Materialy 21-i Vsesoyuzn. nauchnoi studencheskoi konferentsii, Novosibirsk, 1983, 71–76

[9] Gupta N., Sidki S., “Some infinite $p$-groups”, Algebra i logika, 22:5 (1983), 584–589 | MR | Zbl