On problems for linear differential operations
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 411-419

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V\subset\mathbf R^n$ be a bounded region, $H(V)\equiv H$ the Hilbert space of square-integrable complex-valued functions, and $\mathscr L$ a general differential operation of order $m\geqslant1$ that is linear and has constant coefficients. The concept of an operator $S\colon H\to H$ generated by $\mathscr L$ is introduced, and its connection with the operators determined by associating boundary conditions with $\mathscr L$ is studied. The dependence of the structure of the solutions of the equation $Su=f\in H$ on the method for defining $S$ is investigated. The abstract constructions are illustrated by examples of concrete operators. Bibliography: 7 titles.
@article{SM_1987_57_2_a5,
     author = {A. A. Dezin},
     title = {On problems for linear differential operations},
     journal = {Sbornik. Mathematics},
     pages = {411--419},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a5/}
}
TY  - JOUR
AU  - A. A. Dezin
TI  - On problems for linear differential operations
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 411
EP  - 419
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a5/
LA  - en
ID  - SM_1987_57_2_a5
ER  - 
%0 Journal Article
%A A. A. Dezin
%T On problems for linear differential operations
%J Sbornik. Mathematics
%D 1987
%P 411-419
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a5/
%G en
%F SM_1987_57_2_a5
A. A. Dezin. On problems for linear differential operations. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 411-419. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a5/