A uniqueness theorem for second order elliptic equations
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 399-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A uniqueness theorem for the solutions of second order elliptic equations is proved on the basis of a Carleman-type inequality. The author's theorem covers earlier results in this direction obtained by Cordes, Aronszajn, and Hörmander, and is definitive in a certain sense. Bibliography: 11 titles.
@article{SM_1987_57_2_a4,
     author = {V. Z. Meshkov},
     title = {A~uniqueness theorem for second order elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {399--410},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a4/}
}
TY  - JOUR
AU  - V. Z. Meshkov
TI  - A uniqueness theorem for second order elliptic equations
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 399
EP  - 410
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a4/
LA  - en
ID  - SM_1987_57_2_a4
ER  - 
%0 Journal Article
%A V. Z. Meshkov
%T A uniqueness theorem for second order elliptic equations
%J Sbornik. Mathematics
%D 1987
%P 399-410
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a4/
%G en
%F SM_1987_57_2_a4
V. Z. Meshkov. A uniqueness theorem for second order elliptic equations. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 399-410. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a4/

[1] Carleman T., “Sur un problème d'unicité pour les systèmes d'équations aux dérivées patielles à deux variables indépendantes”, Ark. Mat. B, 26:17 (1939), 1–9 | MR | Zbl

[2] Heinz E., “Über die Eindeutigkeit beim Couchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung”, Nachr. Acad. Wiss. Göttingen Math. Phys., 1:Kl. II (1955), 1–12 | MR | Zbl

[3] Cordes H. O., “Über die Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Angbungsvorgaben”, Nachr. Acad. Wiss. Göttingen Math. Phys., 11:Kl. IIa (1956), 239–258 | MR

[4] Aronszajn N., “A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order”, J. Math. Pures Appl., 36 (1957), 235–249 | MR | Zbl

[5] Aronszajn N., Krzywcki A., Szarski J., “A unique continuation theorems for exterior differential forms on Riemannian manifolds”, Ark. Math., 4 (1962), 417–453 | DOI | MR | Zbl

[6] Alinhac S., Bacendi M. S., “Uniqueness for the characteristic Caushy problem and strong unique continuation for higher order partial differential inequalities”, Amer. J. Math., 102 (1980), 179–217 | DOI | MR | Zbl

[7] Alinhac S., “Non-unicite pour des opérateurs différentiels à caractéristiques complexes simples”, Ann. Sci. Ec. Norm. supl., 13:4 (1980), 385–393 | MR | Zbl

[8] Hörmander L., “Uniqueness theorems for second order elliptic differential equations”, Communs. Partial Differ. Equat., 8 (1983), 21–64 | DOI | MR | Zbl

[9] Pliš A., “On non-uniqueness in Caushy problem for an elliptic second order differential equations”, Bull. Acad. Polon. Sci., 11 (1963), 95–100 | MR | Zbl

[10] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, Izd-vo MGU, M., 1983 | MR

[11] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR