The structure of alternative and Jordan compact rings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 391-398
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author develops the structure theory of alternative and Jordan compact rings, and proves that in such rings the quasiregular radical in the strong sense is topologically nilpotent, and the quotient ring by this radical is isomorphic to a full direct sum of finite prime fields with the Tikhonov topology.
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1987_57_2_a3,
     author = {A. M. Slin'ko},
     title = {The structure of alternative and {Jordan} compact rings},
     journal = {Sbornik. Mathematics},
     pages = {391--398},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a3/}
}
                      
                      
                    A. M. Slin'ko. The structure of alternative and Jordan compact rings. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 391-398. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a3/
