The structure of alternative and Jordan compact rings
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 391-398

Voir la notice de l'article provenant de la source Math-Net.Ru

The author develops the structure theory of alternative and Jordan compact rings, and proves that in such rings the quasiregular radical in the strong sense is topologically nilpotent, and the quotient ring by this radical is isomorphic to a full direct sum of finite prime fields with the Tikhonov topology. Bibliography: 11 titles.
@article{SM_1987_57_2_a3,
     author = {A. M. Slin'ko},
     title = {The structure of alternative and {Jordan} compact rings},
     journal = {Sbornik. Mathematics},
     pages = {391--398},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a3/}
}
TY  - JOUR
AU  - A. M. Slin'ko
TI  - The structure of alternative and Jordan compact rings
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 391
EP  - 398
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a3/
LA  - en
ID  - SM_1987_57_2_a3
ER  - 
%0 Journal Article
%A A. M. Slin'ko
%T The structure of alternative and Jordan compact rings
%J Sbornik. Mathematics
%D 1987
%P 391-398
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a3/
%G en
%F SM_1987_57_2_a3
A. M. Slin'ko. The structure of alternative and Jordan compact rings. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 391-398. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a3/