Spectral analysis of a nonselfadjoint differential operator arising in the one-dimensional problem of scattering by a Brownian particle
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 371-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The operator $H=-\partial_{xx}+i\varkappa\partial_{yy}+q(x-y)\cdot$ arising in the averaging of a solution of the Schrödinger equation with a random time-dependent potential is investigated. Analysis of the operator reduces to the study of a family of one-dimensional operators $$ B_p=-\frac{d^2}{dx^2}+2p\frac d{dx}+\frac{q(x)}{1-i\varkappa},\qquad p\in\mathbf R. $$ The distribution of the discrete and continuous spectra of the operators $B_p$ and $H$ is studied. An expansion in eigenfunctions of the operators $B_p$ in $L_2(\mathbf R)$ for almost all $p$ and of the operator $H$ on a set dense in $L_2(\mathbf R^2)$ is obtained. Figures: 1. Bibliography: 4 titles.
@article{SM_1987_57_2_a2,
     author = {S. E. Cheremshantsev},
     title = {Spectral analysis of a~nonselfadjoint differential operator arising in the one-dimensional problem of scattering by {a~Brownian} particle},
     journal = {Sbornik. Mathematics},
     pages = {371--390},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a2/}
}
TY  - JOUR
AU  - S. E. Cheremshantsev
TI  - Spectral analysis of a nonselfadjoint differential operator arising in the one-dimensional problem of scattering by a Brownian particle
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 371
EP  - 390
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a2/
LA  - en
ID  - SM_1987_57_2_a2
ER  - 
%0 Journal Article
%A S. E. Cheremshantsev
%T Spectral analysis of a nonselfadjoint differential operator arising in the one-dimensional problem of scattering by a Brownian particle
%J Sbornik. Mathematics
%D 1987
%P 371-390
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a2/
%G en
%F SM_1987_57_2_a2
S. E. Cheremshantsev. Spectral analysis of a nonselfadjoint differential operator arising in the one-dimensional problem of scattering by a Brownian particle. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 371-390. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a2/

[1] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4 (1959), 57–119 | MR

[2] Cheremshantsev S. E., Nekotorye obobscheniya formuly Feinmana–Katsa, Rukopis dep. v VINITI 4.05.82, No 2195–82 Dep., L., 1982 | Zbl

[3] Cheremshantsev S. E., “Ob usrednenii resheniya uravneniya Shredingera s potentsialom, zavisyaschim ot vremeni sluchainym obrazom”, DAN SSSR, 266:3 (1982), 597–601 | MR | Zbl

[4] Cheremshantsev S. E., “Kvantovoe rasseyanie na brounovskoi chastitse s kompleksnym potentsialom”, TMF, 56:1 (1983), 125–130 | MR