On approximation of superharmonic functions in open sets
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 591-599 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article deals with an investigation and some applications of the following problem. Let $D\subset\mathbf R^n$, $n\geqslant2$, be a bounded region coinciding with the interior of its closure, let $S(\overline D)$ be the set of bounded superharmonic functions on $D$, and let $S_C^0(\overline D)$ be the set of functions continuous and superharmonic in a neighborhood of $\overline D$. It is necessary to find conditions under which each function $V(x)$ in some subset $S'\subset S(D)$ is representable in the form $$ V(x)=\varliminf_{y\to x}\inf F(y),\qquad x,y\in D, $$ where the infimum is over a system of functions in $S_C^0(D)$ such that $F(x)>\overline V(x)=\varlimsup_{y\to x}V(y)$, $x,y\in D$. A solution is presented for certain cases when the set $S'$ is specified concretely. Bibliography: 9 titles.
@article{SM_1987_57_2_a16,
     author = {M. Shirinbekov},
     title = {On approximation of superharmonic functions in open sets},
     journal = {Sbornik. Mathematics},
     pages = {591--599},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a16/}
}
TY  - JOUR
AU  - M. Shirinbekov
TI  - On approximation of superharmonic functions in open sets
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 591
EP  - 599
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a16/
LA  - en
ID  - SM_1987_57_2_a16
ER  - 
%0 Journal Article
%A M. Shirinbekov
%T On approximation of superharmonic functions in open sets
%J Sbornik. Mathematics
%D 1987
%P 591-599
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a16/
%G en
%F SM_1987_57_2_a16
M. Shirinbekov. On approximation of superharmonic functions in open sets. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 591-599. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a16/

[1] Behnke H., Thullen P., “Zur Theorie der Singularitäten der Funktionen mehrerer komplexen veränderlichen. Das konvergenz – problem der Regularitätshüllen”, Math., 108 (1933), 91 | MR | Zbl

[2] Shirinbekov M., “Odno dostatochnoe uslovie suschestvovaniya dopolnitelnoi obolochki golomorfnosti”, Vsesoyuznaya konf. po teorii funktsii kompl. perem. (tez. dokl.), Kharkov, 1971, 80

[3] Diederich K., Fornaess J., “Pseudoconvex domains: an example with nontrivial Nebenhülle”, Math. Ann., 225 (1977), 275–292 | DOI | MR | Zbl

[4] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompl. perem”, Sovremennye problemy matematiki, 4, VINITI, M., 1975, 13–142

[5] Uells R. O., “Teoriya funktsii na differentsiruemykh mnogoobraziyakh v $\mathbf{C}^n$”, UMN, 33:1 (1978), 154–193 | MR

[6] Bedford E., Fornaess J., Approximation on pseudoconvex domains “Complex Approximation Proc, Quebec, 1978”, Boston e. a., 1980, p. 103–109 ; РЖМат, I (1982), Б297 | MR

[7] Shirinbekov M., “O kompaktakh golomorfnosti Gartogsa”, Matem. sb., 115(157) (1981), 453–462 | MR | Zbl

[8] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980