On a conjecture of S. Bernstein in approximation theory
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 547-560 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With $E_{2n}(|x|)$ denoting the error of best uniform approximation to $|x|$ by polynomials of degree at most $2n$ on the interval $[-1,1]$, the famous Russian mathematician S. Bernstein in 1914 established the existence of a positive constant $\beta$ for which $$ \lim_{n\to\infty}(2nE_{2n}(|x|))=:\beta. $$ Moreover, by means of numerical calculations, Bernstein determined, in the same paper, the following upper and lower bounds for $\beta$: $0,278<\beta<0,286$ Now, the average of these bounds is 0.282, which, as Bernstein noted as a “curious coincidence”, is very close to $\frac1{2\sqrt\pi}=0,2820947917\dots$. This observation has over the years become known as The Bernstein Conjecture. {\it Is $\beta=\frac1{2\sqrt\pi}?$} We show here that the Bernstein conjecture is false. In addition, we determine rigorous upper and lower bounds for $\beta$, and by means of the Richardson extrapolation procedure, estimate $\beta$ to approximately 50 decimal places. Tables: 4. Bibliography: 12 titles.
@article{SM_1987_57_2_a14,
     author = {R. S. Varga and A. J. Carpenter},
     title = {On a~conjecture of {S.~Bernstein} in approximation theory},
     journal = {Sbornik. Mathematics},
     pages = {547--560},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a14/}
}
TY  - JOUR
AU  - R. S. Varga
AU  - A. J. Carpenter
TI  - On a conjecture of S. Bernstein in approximation theory
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 547
EP  - 560
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a14/
LA  - en
ID  - SM_1987_57_2_a14
ER  - 
%0 Journal Article
%A R. S. Varga
%A A. J. Carpenter
%T On a conjecture of S. Bernstein in approximation theory
%J Sbornik. Mathematics
%D 1987
%P 547-560
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a14/
%G en
%F SM_1987_57_2_a14
R. S. Varga; A. J. Carpenter. On a conjecture of S. Bernstein in approximation theory. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 547-560. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a14/

[1] Bell R. A., Shah S. M., “Oscilating polynomials and approximations to $|x|$”, Publ. Ramanujan Inst., 1 (1969), 167–177 | MR | Zbl

[2] Bernstein S., “Sur la meilleure approximation de $|x|$ par des polynomes de degrés donnés”, Acta Math., 37 (1914), 1–57 ; Bernshtein S. N., O nailuchshem priblizhenii $|x|$ posredstvom mnogochlenov dannoi stepeni, Sobr. soch., T. 1, Izd-vo AN SSSR, M.-L., s. 157–206 | DOI | MR

[3] Bojanic R., Elkins J. M., “Bernstein's constant and best approximation on $[0,\infty)$”, Publ. de l'Inst. Math., Nouvelle sér., 18(32) (1975), 19–30 | MR | Zbl

[4] Brent Richard P., “A FORTRAN multiple-precision arithmetic package”, Assoc. Comput. Math. Trans. Math. Software, 4 (1978), 57–70 | DOI

[5] Brezinski C., Algorithmes d'Accéléracion de la Couvergence, Editions Technip., Paris, 1978 | MR | Zbl

[6] Cody W. J., Strecok A. J., Thacher H. C., “Chebyshev approximations for the psi function”, Math. of Comp., 27 (1973), 123–127 | DOI | MR | Zbl

[7] Henrici P., Applied and Computational Complex Analysis, v. 1, John Wiley and Sons, New York, 1974 | MR | Zbl

[8] Meinardus G., Approximations of functions: Theory and Numerical Methods, Springer-Verlag, New York, 1967 | MR | Zbl

[9] Remez E. Ya., “Sur le calcul effectiv des polynomes d'approximation de Tchebichef”, C. R. Acad. Sci. Paris, 199 (1934), 337–340 | Zbl

[10] Rivlin T. J., An introduction to the Approximation of functions, Blaisdell Publishing Co., Waltham, M. A, 1969 | MR | Zbl

[11] Salvati D. A., Numerical computation of polynomials of best uniform approximation to the function $|x|$, Master's Thesis, v. 39, Ohio State University, 1980

[12] Whittaker E. T., Watson G. N., A Course of Modern Analysis, fourth edition, Cambridge at the University Press, 1962 ; Uitteker E. T., Vatson D. N., Kurs sovremennogo analiza, T 1, 2, Gostekhizdat, M., 1963 | MR | Zbl