On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 527-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All homogeneous spaces $G/K$ ($G$ is a semisimple complex (compact) Lie group, $K$ a reductive subgroup) are enumerated for which arbitrary Hamiltonian flows on $T^*(G/K)$ with $G$-invariant Hamiltonians are integrable in the class of Noether integrals. It is proved that only for these spaces $G/K$ does the quasiregular representation of $G$ in the space of regular functions of the algebraic variety $G/K$ have a simple spectrum. Bibliography: 21 titles.
@article{SM_1987_57_2_a13,
     author = {I. V. Mykytyuk},
     title = {On the integrability of invariant {Hamiltonian} systems with homogeneous configuration spaces},
     journal = {Sbornik. Mathematics},
     pages = {527--546},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a13/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 527
EP  - 546
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a13/
LA  - en
ID  - SM_1987_57_2_a13
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces
%J Sbornik. Mathematics
%D 1987
%P 527-546
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a13/
%G en
%F SM_1987_57_2_a13
I. V. Mykytyuk. On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 527-546. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a13/

[1] Timm A., “Integrable geodesic flows on homogeneus spaces”, Ergod. Th. Dynam. Sys., 1 (1981), 495–517 | MR

[2] Mischenko A. S., “Integrirovanie geodezicheskikh potokov na simmetricheskikh prostranstvakh”, Matem. zametki, 31:2 (1982), 257–262 | MR | Zbl

[3] Mikityuk I. V., “Odnorodnye prostranstva s integriruemymi $G$-invariantnymi gamiltonovymi potokami”, Izv. AN SSSR. Ser. matem., 47:6 (1983), 1248–1262 | MR | Zbl

[4] Guillemin V., Sternberg S., “Multiplisity-free spaces”, J. Diff. Geometry, 19:1 (1984), 31–56 | MR | Zbl

[5] Krëmer M., “Sphärische Untergruppen in compacten zusammenhangenden Liegruppen”, Compositio Mathematica, 38:2 (1979), 129–153 | MR

[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl

[7] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[8] Vinberg E. B., Kimelfeld B. N., “Odnorodnye oblasti na flagovykh mnogoobraziyakh i sfericheskie podgruppy poluprostykh grupp Li”, Funktsion. analiz i ego pril., 12:3 (1978), 12–19 | MR | Zbl

[9] Dzyadyk Yu. V., “Predstavleniya, realizuemye v vektornykh polyakh na kompaktnykh simmetricheskikh prostranstvakh”, DAN SSSR, 220:6 (1975), 1259–1262 | Zbl

[10] Vinberg E. B., “Slozhnost deistviya reduktivnykh algebraicheskikh grupp”, Funktsion. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl

[11] Burbaki N., Gruppy i algebry Li, gl. I–III, Mir, M., 1976 ; Группы и алгебры Ли, гл. IV–VI, Мир, M., 1972 ; Группы и алгебры Ли, гл. VII, VIII, Мир, M., 1978 | MR | Zbl | MR

[12] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1980

[13] Onischik A. L., “Otnosheniya vklyucheniya mezhdu gruppami preobrazovanii”, Tr. MMO, 11 (1962), 199–242 | Zbl

[14] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, T. 2, Mir, M., 1980 | Zbl

[15] Araki S., “Kornevye sistemy i lokalnaya klassifikatsiya neprivodimykh simmetrichnykh prostranstv”, Matematika (sb. perevodov), 10:1 (1966), 90–127 | MR

[16] Dynkin E. B., “Maksimalnye podgruppy klassicheskikh grupp”, Tr. MMO, 1 (1952), 39–151 | MR

[17] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funktsion. analiz i ego pril., 6:1 (1972), 51–62 | Zbl

[18] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72) (1952), 349–462 | MR | Zbl

[19] Ii K., Watanabe S., “Complete integrability of the geodesic flows on symmetric spaces”, Advanced Studies in Pure Mathematics, 3 (1984), 105–124 | MR | Zbl

[20] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funktsion. analiz i ego pril., 12:2 (1978), 46–56 | MR | Zbl

[21] Brailov A. V., “Nekotorye sluchai polnoi integriruemosti uravnenii Eilera i prilozheniya”, DAN SSSR, 268, no. 5, 1043–1046 | MR | Zbl