Trivial bundles of spaces of probability measures
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 485-505
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the probability measure functor $P$ carries open mappings $f\colon X\to Y$ of finite-dimensional compact metric spaces with infinite fibers $f^{-1}y$ into $Q$-bundles. If in addition the fibers $f^{-1}y$ do not have isolated points, then it is possible to drop the condition that $X$ be finite-dimensional. Also, necessary and sufficient conditions are given for the mapping $P(f)$ to be a trivial bundle with fiber homeomorphic to a Tychonoff cube in the case of a mapping $f$ onto a dyadic compactum.
Bibliography: 27 titles.
			
            
            
            
          
        
      @article{SM_1987_57_2_a11,
     author = {V. V. Fedorchuk},
     title = {Trivial bundles of spaces of probability measures},
     journal = {Sbornik. Mathematics},
     pages = {485--505},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/}
}
                      
                      
                    V. V. Fedorchuk. Trivial bundles of spaces of probability measures. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 485-505. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/
