Trivial bundles of spaces of probability measures
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 485-505

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the probability measure functor $P$ carries open mappings $f\colon X\to Y$ of finite-dimensional compact metric spaces with infinite fibers $f^{-1}y$ into $Q$-bundles. If in addition the fibers $f^{-1}y$ do not have isolated points, then it is possible to drop the condition that $X$ be finite-dimensional. Also, necessary and sufficient conditions are given for the mapping $P(f)$ to be a trivial bundle with fiber homeomorphic to a Tychonoff cube in the case of a mapping $f$ onto a dyadic compactum. Bibliography: 27 titles.
@article{SM_1987_57_2_a11,
     author = {V. V. Fedorchuk},
     title = {Trivial bundles of spaces of probability measures},
     journal = {Sbornik. Mathematics},
     pages = {485--505},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Trivial bundles of spaces of probability measures
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 485
EP  - 505
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/
LA  - en
ID  - SM_1987_57_2_a11
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Trivial bundles of spaces of probability measures
%J Sbornik. Mathematics
%D 1987
%P 485-505
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/
%G en
%F SM_1987_57_2_a11
V. V. Fedorchuk. Trivial bundles of spaces of probability measures. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 485-505. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/