Trivial bundles of spaces of probability measures
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 485-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the probability measure functor $P$ carries open mappings $f\colon X\to Y$ of finite-dimensional compact metric spaces with infinite fibers $f^{-1}y$ into $Q$-bundles. If in addition the fibers $f^{-1}y$ do not have isolated points, then it is possible to drop the condition that $X$ be finite-dimensional. Also, necessary and sufficient conditions are given for the mapping $P(f)$ to be a trivial bundle with fiber homeomorphic to a Tychonoff cube in the case of a mapping $f$ onto a dyadic compactum. Bibliography: 27 titles.
@article{SM_1987_57_2_a11,
     author = {V. V. Fedorchuk},
     title = {Trivial bundles of spaces of probability measures},
     journal = {Sbornik. Mathematics},
     pages = {485--505},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Trivial bundles of spaces of probability measures
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 485
EP  - 505
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/
LA  - en
ID  - SM_1987_57_2_a11
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Trivial bundles of spaces of probability measures
%J Sbornik. Mathematics
%D 1987
%P 485-505
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/
%G en
%F SM_1987_57_2_a11
V. V. Fedorchuk. Trivial bundles of spaces of probability measures. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 485-505. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a11/

[1] Fedorchuk V. V., On hypermaps, which are trivial bundles, Lect. Notes in Math., 1060, 1984, p. 26–36 | MR | Zbl

[2] Fedorchuk V. V., “O nekotorykh geometricheskikh svoistvakh kovariantnykh funktorov”, UMN, 39:5 (1984), 169–208 | MR | Zbl

[3] Fedorchuk V. V., “Kovariantnye funktory v kategorii kompaktov, absolyutnye retrakty i $Q$-mnogoobraziya”, UMN, 36:3 (1981), 177–195 | MR | Zbl

[4] Riesz F., “Sur les operations fonctioneelles linéaires”, C. r. Acad. Sci., Paris, 149 (1909), 974–977

[5] Pelchinskii A., Lineinye prodolzheniya, lineinye usredneniya i ikh primeneniya k lineinoi topologicheskoi klassifikatsii prostranstv nepreryvnykh funktsii, Mir, M., 1970

[6] Fedorchuk V. V., Proizvedeniya i spektry topologicheskikh prostranstv, Ch. 1, Izd-vo MGU, M., 1979

[7] Ditor S. Z., “Averaging operators in $C(S)$ and lower semicontinuous sections of continuous maps”, Trans. Amer. Math. Soc., 175 (1973), 195–208 | DOI | MR | Zbl

[8] Aleksandrov P. A., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[9] Toruńczyk H., West J. E., Fibration vs bundles in Hilbert cube manifolds, Preprint, 1980 | MR

[10] Schepin E. V., “Topologiya predelnykh prostranstv neschetnykh obratnykh spektrov”, UMN, 31:5 (1976), 191–226 | MR | Zbl

[11] Ferry S., “Strongly regular mappings with compact ANR fibers are Hurewicz fiberings”, Pacific J. Math., 752 (1978), 373–382 | MR

[12] Klee V., “Some topological properties of convex sets”, Trans. Amer. Math. Soc., 78 (1955), 30–45 | DOI | MR | Zbl

[13] Ditor S. Z., Eifler L. Q., “Some open mappings theorems for measures”, Trans. Amer. Math. Soc., 164 (1972), 287–293 | DOI | MR | Zbl

[14] Michael E., “Continuous selections. I”, Ann. Math., 63 (1956), 361–382 | DOI | MR | Zbl

[15] Chapman T. A., Ferry S., “Hurewicz fiber maps with ANR fibers”, Topology, 16:2 (1977), 131–143 | DOI | MR | Zbl

[16] Chepmen T. A., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981 | MR

[17] Brown M., “Some application of an approximation theorem for inverse limits”, Proc. Amer. Math. Soc., 11:3 (1960), 478–483 | DOI | MR | Zbl

[18] Michael E., “Continuous selections. II”, Ann. Math., 64 (1956), 562–580 | DOI | MR | Zbl

[19] Bula W., “Open maps resemble projections”, Bull. Pol. Acad. Sci. (Math.), 31 (1983), 175–181 | MR | Zbl

[20] Haydon R., “On a problem of Pelczynski: Milutin spaces, Dugundji spaces and $\text{AE}(0-\operatorname{Dim})$”, Studia Math., 52 (1979), 23–31 | MR

[21] Ditor S. Z., Haydon R., “On absolute retracts, $P(S)$, and complemented subspaces of $C(D^{w_1})$”, Studia Math., 56:3 (1976), 243–251 | MR | Zbl

[22] Schepin E. V., “O tikhonovskikh mnogoobraziyakh”, DAN SSSR, 246:3 (1979), 551–554 | MR | Zbl

[23] Efimov B. A., “Diadicheskie bikompakty”, Tr. MMO, 14 (1965), 211–247 | MR

[24] Efimov B. A., “Otobrazheniya i vlozheniya diadicheskikh prostranstv”, Matem. sb., 103(145) (1977), 52–68 | MR | Zbl

[25] Hagler J., “On structure of $S$ and $C(S)$ for $S$ dyadis”, Trans. Amer. Math. Soc., 214 (1975), 415–428 | DOI | MR | Zbl

[26] Gerlits J., “On subspaces of dyadic compacta”, Budapest, Math. Inst., Hung. Acad. Sci., 1976, 1–16 | MR

[27] Shapiro L. B., “O prostranstvakh veroyatnostnykh mer”, UMN, 34:2 (1979), 219–220 | MR | Zbl