Averagind of difference schemes
Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 351-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers a natural class of difference equations whose coefficients have micro-inhomogeneities. A general compactness theorem is established, asserting that the solutions of these difference equations can converge only to solutions of differential equations as the lattice is refined. Difference equations with random micro-inhomogeneous coefficients are studied separately; their averaging properties are determined. Bibliography: 12 titles.
@article{SM_1987_57_2_a1,
     author = {S. M. Kozlov},
     title = {Averagind of difference schemes},
     journal = {Sbornik. Mathematics},
     pages = {351--369},
     year = {1987},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_2_a1/}
}
TY  - JOUR
AU  - S. M. Kozlov
TI  - Averagind of difference schemes
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 351
EP  - 369
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_2_a1/
LA  - en
ID  - SM_1987_57_2_a1
ER  - 
%0 Journal Article
%A S. M. Kozlov
%T Averagind of difference schemes
%J Sbornik. Mathematics
%D 1987
%P 351-369
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_57_2_a1/
%G en
%F SM_1987_57_2_a1
S. M. Kozlov. Averagind of difference schemes. Sbornik. Mathematics, Tome 57 (1987) no. 2, pp. 351-369. http://geodesic.mathdoc.fr/item/SM_1987_57_2_a1/

[1] Kunin L. A., Teoriya uprugikh sred s mikrostrukturoi, Nauka, M., 1975

[2] Seshu S., Rid M., Lineinye grafy i elektricheskie tsepi, Nauka, M., 1971

[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[4] Anshelevich V. V., Khanin K. M., Sinai Ya. G., “Symmetric random walks in random environments”, Commun. Math. Phys., 86:1 (1982), 1–22 | DOI | MR

[5] Kozlov S. M., “Metod usredneniya i bluzhdaniya v neodnorodnykh sredakh”, UMN, 40:2 (1985), 61–120 | MR

[6] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha T'en Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 65–133 | MR | Zbl

[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[8] Spagnolo S., “Sulla convergenza di solutioni di equazioni paraboliche ed ellittice”, Ann. Scoula Norm. Sup. Risa, 22 (1968), 577–597 | MR

[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., “O $G$-skhodimosti parabolicheskikh operatorov”, UMN, 36:1 (1981), 11–58 | MR

[10] Marchellini P., “Convergence of second order liniar elliptic operators”, Boll. Un. Mat. Ital., 5:16 (1979), 278–290 | MR

[11] Bovin V. P.. Vaskin V. V., Shneiberg I. Ya., “Rekursivnye modeli v teorii protekaniya”, TMF, 54:2 (1983), 268–279 | MR

[12] Kirpatrik S., “Perkolyatsiya i provodimost”, Sb. NFTT, no. 7, Mir, M., 248–292