Universal Menger compacta and universal mappings
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 131-149

Voir la notice de l'article provenant de la source Math-Net.Ru

For any positive integer $n$ the author constructs a continuous mapping $f_n\colon M_n\to M_n$ of the $n$-dimensional Menger compactum onto itself that is universal in the class of mappings between $n$-dimensional compacta, i.e., for any continuous mapping $g\colon X\to Y$ between $n$-dimensional compacta there exist imbeddings of $X$ and $Y$ in $M_n$ such that the restriction of $f_n$ to $X$ is homeomorphic to $g$. The mapping $f_n$ plays the same role in the theory of Menger $n$-dimensional manifolds as the projection $\pi\colon Q\times Q\to Q$ plays in the theory of $Q$-manifolds ($Q$ is the Hilbert cube). It can be used to carry over the classical theorems in the theory of $Q$-manifolds to the theory of $M_n$-manifolds: Stabilization theorem. {\it For any $M_n$-manifold $X$ and any imbedding of $X$ in $M_n$ the space $f_n^{-1}(X)$ is homeomorphic to $X$.} Triangulation theorem. {\it For any $M_n$-manifold $X$ there exists an $n$-dimensional polyhedron $K$ such that the space $f_n^{-1}(K)$ is homeomorphic to $X$ for every imbedding of $K$ in $M_n$.} Bibliography: 20 titles.
@article{SM_1987_57_1_a7,
     author = {A. N. Dranishnikov},
     title = {Universal {Menger} compacta and universal mappings},
     journal = {Sbornik. Mathematics},
     pages = {131--149},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - Universal Menger compacta and universal mappings
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 131
EP  - 149
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/
LA  - en
ID  - SM_1987_57_1_a7
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T Universal Menger compacta and universal mappings
%J Sbornik. Mathematics
%D 1987
%P 131-149
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/
%G en
%F SM_1987_57_1_a7
A. N. Dranishnikov. Universal Menger compacta and universal mappings. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 131-149. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/