Universal Menger compacta and universal mappings
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 131-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any positive integer $n$ the author constructs a continuous mapping $f_n\colon M_n\to M_n$ of the $n$-dimensional Menger compactum onto itself that is universal in the class of mappings between $n$-dimensional compacta, i.e., for any continuous mapping $g\colon X\to Y$ between $n$-dimensional compacta there exist imbeddings of $X$ and $Y$ in $M_n$ such that the restriction of $f_n$ to $X$ is homeomorphic to $g$. The mapping $f_n$ plays the same role in the theory of Menger $n$-dimensional manifolds as the projection $\pi\colon Q\times Q\to Q$ plays in the theory of $Q$-manifolds ($Q$ is the Hilbert cube). It can be used to carry over the classical theorems in the theory of $Q$-manifolds to the theory of $M_n$-manifolds: Stabilization theorem. {\it For any $M_n$-manifold $X$ and any imbedding of $X$ in $M_n$ the space $f_n^{-1}(X)$ is homeomorphic to $X$.} Triangulation theorem. {\it For any $M_n$-manifold $X$ there exists an $n$-dimensional polyhedron $K$ such that the space $f_n^{-1}(K)$ is homeomorphic to $X$ for every imbedding of $K$ in $M_n$.} Bibliography: 20 titles.
@article{SM_1987_57_1_a7,
     author = {A. N. Dranishnikov},
     title = {Universal {Menger} compacta and universal mappings},
     journal = {Sbornik. Mathematics},
     pages = {131--149},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - Universal Menger compacta and universal mappings
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 131
EP  - 149
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/
LA  - en
ID  - SM_1987_57_1_a7
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T Universal Menger compacta and universal mappings
%J Sbornik. Mathematics
%D 1987
%P 131-149
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/
%G en
%F SM_1987_57_1_a7
A. N. Dranishnikov. Universal Menger compacta and universal mappings. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 131-149. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a7/

[1] Nöbeling G., “Uber eine $n$-dimensionale Universalmenge im $R^{2n + l}$”, Math. Ann., 104 (1931), 71–80 | DOI | MR

[2] Pontryagin L. S, Tolstova G., “Beweis des Mengerschen Einbettungssatzes”, Math. Ann., 105 (1931), 734–747 | DOI | MR

[3] Menger K., “Allgemeine Räume und Cartesische Räume Zweite Mitteilung: Uber umfassendste $n$-dimensionale Mengen”, Proc. Akad. Amsterdam,, 29 (1926), 1125–1128 | Zbl

[4] Bothe H. G., “Eine Einbettung $m$-dimensionaler Mengen in einem $(m+1)$-dimensionalen absoluten Retrakt”, Fund. Math, 52 (1963), 209–224 | MR | Zbl

[5] Lefschetz S., “On compact spaces”, Ann. of Math., 32 (1931), 521–538 | DOI | MR | Zbl

[6] Bestvina M., Characterization $k$-dimensional universal Menger compacta, Dissertation on Ph.-D., Knoxville, University of Tennessee, 1984

[7] Dranishnikov A. N., “Absolyutnye ekstenzory v razmernosti $n$ i $n$-myagkie otobrazheniya, povyshayuschie razmernost”, UMN, 39:5 (1984), 55–95 | MR | Zbl

[8] Anderson R. D., “One-dimensional continuous curves and a homogeneity theorem”, Ann. of Math., 68:1 (1958), 1–16 | DOI | MR | Zbl

[9] Kuratovskii K., Topologiya, t. 2, Mir, M., 1969 | MR

[10] Keller O. H., “Die Homoiomorphie der kompakten konvexen Mengen in Hilbertschen Raum”, Math. Ann., 105 (1931), 748–758 | DOI | MR | Zbl

[11] Torunczyk H., “On $CE$-images of the Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106:1 (1980), 31–40 | MR | Zbl

[12] Chepmen T., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981 | MR

[13] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–61 | MR

[14] Anderson R. D., “Monotone interior dimensionraising mappings”, Duke Math. J., 19 (1952), 359–366 | DOI | MR | Zbl

[15] Dranishnikov A. N., “Absolyutnye ekstenzory v razmernosti $n$ i $n$-myagkie otobrazheniya”, DAN SSSR, 277:2 (1984), 284–287 | MR | Zbl

[16] Hoffman B., “An injective characterization of Peano spaces”, Top. Appl., 11 (1980), 37–46 | DOI | MR | Zbl

[17] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR | Zbl

[18] Michael E., “Continuous selection II”, Ann. Math., ser. 2, 64:3 (1956), 562–580 | DOI | MR | Zbl

[19] Pasynkov B. A., “Chastichnye topologicheskie proizvedeniya”, Tr. MMO, 13 (1965), 136–244 | MR

[20] Chigogidze A. Ch., “Neschetnye stepeni pryamoi, naturalnogo ryada i $n$-myagkie otobrazheniya”, DAN SSSR, 278:1 (1984), 50–53 | MR | Zbl