On the property of being finitely based of some solvable varieties of Lie algebras of finite axiomatic rank
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 111-129
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a maximality condition is established for verbal subalgebras of a relatively free algebra, over a field of cardinality at least $c+1$, of the variety $\mathfrak N_c\mathfrak N_d$ of Lie algebras with a finite set of free generators. (The variety $\mathfrak N_c\mathfrak N_d$ consists of the algebras obtained by extending nilpotent Lie algebras of class $c$ by means of nilpotent Lie algebras of class $d$.) Bibliography: 5 titles.
@article{SM_1987_57_1_a6,
author = {V. V. Stovba},
title = {On the property of being finitely based of some solvable varieties of {Lie~algebras} of finite axiomatic rank},
journal = {Sbornik. Mathematics},
pages = {111--129},
year = {1987},
volume = {57},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a6/}
}
V. V. Stovba. On the property of being finitely based of some solvable varieties of Lie algebras of finite axiomatic rank. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 111-129. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a6/
[1] Razmyslov Yu. P., “O radikale Dzhekobsona v $PI$-algebrakh”, Algebra i logika, 13:3 (1974), 337–360 | MR | Zbl
[2] Krasilnikov A. N., “Konechnaya baziruemost nekotorykh mnogoobrazii algebr Li”, Vestn. MGU. Ser. 1, Matematika, mekhanika, 1982, no. 2, 34–38 | MR | Zbl
[3] Drenski V. S., “O tozhdestvakh v algebrakh Li”, Algebra i logika, 13:3 (1974), 265–290 | MR | Zbl
[4] Bahturin J. A., Lectures on Lie algebras, Academie-Verlag, Berlin, 1978 | MR
[5] Leng S., Algebra, Mir, M., 1968