On the property of being finitely based of some solvable varieties of Lie algebras of finite axiomatic rank
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 111-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a maximality condition is established for verbal subalgebras of a relatively free algebra, over a field of cardinality at least $c+1$, of the variety $\mathfrak N_c\mathfrak N_d$ of Lie algebras with a finite set of free generators. (The variety $\mathfrak N_c\mathfrak N_d$ consists of the algebras obtained by extending nilpotent Lie algebras of class $c$ by means of nilpotent Lie algebras of class $d$.) Bibliography: 5 titles.
@article{SM_1987_57_1_a6,
     author = {V. V. Stovba},
     title = {On the property of being finitely based of some solvable varieties of {Lie~algebras} of finite axiomatic rank},
     journal = {Sbornik. Mathematics},
     pages = {111--129},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a6/}
}
TY  - JOUR
AU  - V. V. Stovba
TI  - On the property of being finitely based of some solvable varieties of Lie algebras of finite axiomatic rank
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 111
EP  - 129
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a6/
LA  - en
ID  - SM_1987_57_1_a6
ER  - 
%0 Journal Article
%A V. V. Stovba
%T On the property of being finitely based of some solvable varieties of Lie algebras of finite axiomatic rank
%J Sbornik. Mathematics
%D 1987
%P 111-129
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a6/
%G en
%F SM_1987_57_1_a6
V. V. Stovba. On the property of being finitely based of some solvable varieties of Lie algebras of finite axiomatic rank. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 111-129. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a6/

[1] Razmyslov Yu. P., “O radikale Dzhekobsona v $PI$-algebrakh”, Algebra i logika, 13:3 (1974), 337–360 | MR | Zbl

[2] Krasilnikov A. N., “Konechnaya baziruemost nekotorykh mnogoobrazii algebr Li”, Vestn. MGU. Ser. 1, Matematika, mekhanika, 1982, no. 2, 34–38 | MR | Zbl

[3] Drenski V. S., “O tozhdestvakh v algebrakh Li”, Algebra i logika, 13:3 (1974), 265–290 | MR | Zbl

[4] Bahturin J. A., Lectures on Lie algebras, Academie-Verlag, Berlin, 1978 | MR

[5] Leng S., Algebra, Mir, M., 1968