Representation of large numbers by ternary quadratic forms
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 43-56

Voir la notice de l'article provenant de la source Math-Net.Ru

Assuming a nontrivial displacement of the zeros of Dirichlet $L$-functions with quadratic characters, the author obtains asymptotic formulas for the number of lattice points in regions on the surface $n=f(x,y,z)$ $(n\to\infty)$, where $f(x,y,z)$ is an arbitrary nondegenerate integral quadratic form, $n\ne n_1n_2^2$, and $n_1$ is a divisor of twice the discriminant of $f$. The cases of an ellipsoid, a two-sheeted hyperboloid, and a one-sheeted hyperboloid are examined in a uniform way. Bibliography: 25 titles.
@article{SM_1987_57_1_a2,
     author = {E. P. Golubeva},
     title = {Representation of large numbers by ternary quadratic forms},
     journal = {Sbornik. Mathematics},
     pages = {43--56},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Representation of large numbers by ternary quadratic forms
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 43
EP  - 56
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/
LA  - en
ID  - SM_1987_57_1_a2
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Representation of large numbers by ternary quadratic forms
%J Sbornik. Mathematics
%D 1987
%P 43-56
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/
%G en
%F SM_1987_57_1_a2
E. P. Golubeva. Representation of large numbers by ternary quadratic forms. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/