Representation of large numbers by ternary quadratic forms
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 43-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Assuming a nontrivial displacement of the zeros of Dirichlet $L$-functions with quadratic characters, the author obtains asymptotic formulas for the number of lattice points in regions on the surface $n=f(x,y,z)$ $(n\to\infty)$, where $f(x,y,z)$ is an arbitrary nondegenerate integral quadratic form, $n\ne n_1n_2^2$, and $n_1$ is a divisor of twice the discriminant of $f$. The cases of an ellipsoid, a two-sheeted hyperboloid, and a one-sheeted hyperboloid are examined in a uniform way. Bibliography: 25 titles.
@article{SM_1987_57_1_a2,
     author = {E. P. Golubeva},
     title = {Representation of large numbers by ternary quadratic forms},
     journal = {Sbornik. Mathematics},
     pages = {43--56},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Representation of large numbers by ternary quadratic forms
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 43
EP  - 56
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/
LA  - en
ID  - SM_1987_57_1_a2
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Representation of large numbers by ternary quadratic forms
%J Sbornik. Mathematics
%D 1987
%P 43-56
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/
%G en
%F SM_1987_57_1_a2
E. P. Golubeva. Representation of large numbers by ternary quadratic forms. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a2/

[1] Linnik Yu. V., “Asimptotiko-geometricheskie i ergodicheskie svoistva mnozhestva tselykh tochek na sfere”, Matem. sb., 43(85) (1957), 257–276 | MR | Zbl

[2] Linnik Yu. V., “Asimptoticheskoe raspredelenie binarnykh kvadratichnykh form v svyazi s geometriei Lobachevskogo”, Vestn. LGU. Ser. matem., fiz., khim., 2:1 (1955), 3–23 ; 5:2, 3–32 ; 8:3, 15–27 | MR | Zbl

[3] Malyshev A. V., “O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami”, Tr. MIAN, 69, 1962, 1–212

[4] Skubenko B. F., “Asimptoticheskoe raspredelenie tselykh tochek na odnopolostnom giperboloide i ergodicheskie teoremy”, Izv. AN SSSR. Ser. matem., 26 (1962), 721–752 | MR | Zbl

[5] Teterin Yu. G., Predstavleniya chisel ternarnymi kvadratichnymi formami nad maksimalnymi poryadkami algebraicheskikh chislovykh polei, Dis. ... kand. fiz.-matem. nauk, LOMI, L., 1983

[6] Linnik Yu. V, Ergodicheskie svoistva algebraicheskikh polei, Izd-vo LGU, L., 1967

[7] Malyshev A. V., “Diskretnyi ergodicheskii metod Yu. V. Linnika i ego dalneishee razvitie”, Linnik Yu. V. Izbrannye trudy. Teoriya chisel. Ergodicheskii metod i $L$-funktsii, Nauka, L., 1979, 418–430 | MR

[8] Malyshev A. V., “O primenenii diskretnogo ergodicheskogo metoda v analiticheskoi arifmetike neopredelennykh ternarnykh kvadratichnykh form”, Zap. nauchn. seminarov LOMI, 1980, 5–24 | MR | Zbl

[9] Golubeva E. P., “O predstavlenii bolshikh chisel ternarnymi kvadratichnymi formami”, DAN SSSR, 191:3 (1970), 519–521 | MR | Zbl

[10] Golubeva E. P., “Asimptotika chisla tselykh tochek na nekotorykh ellipsoidakh”, Matem. zametki, 11:6 (1972), 625–634 | MR | Zbl

[11] Golubeva E. P., Fomenko O. M., “Raspredelenie tselykh tochek na dvupolostnykh giperboloidakh”, Tr. MIAN, 158, 1981, 69–79 | MR | Zbl

[12] Vinogradov A. I., “Obschee uravnenie Khardi–Littlvuda”, Matem. zametki, 1:2 (1967), 189–197

[13] Bredikhin B. M., Linnik Yu. V., “Binarnye additivnye zadachi s ergodicheskimi svoistvami reshenii”, DAN SSSR, 166:6 (1966), 1267–1269 | Zbl

[14] Bredikhin B. M., Linnik Yu. V., “Asimptotika i ergodicheskie svoistva obobschennogo uravneniya Khardi–Littlvuda”, Matem. sb., 71(113) (1966), 145–161 | Zbl

[15] Golubeva E. P., “Asimptoticheskoe raspredelenie tselykh tochek, prinadlezhaschikh zadannym klassam vychetov, na giperboloidakh spetsialnogo vida”, Matem. sb., 123(165) (1984), 510–533 | MR | Zbl

[16] Pall G., Jones B. W., “Regular and semi-regular positive ternary guadratic forms”, Acta math., 70 (1939), 165–191 | DOI | MR | Zbl

[17] Lomadze G. A., “Formuly dlya chisla predstavlenii chisel nekotorymi regulyarnymi i poluregulyarnymi ternarnymi kvadratichnymi formami, prinadlezhaschimi dvukhklassnym rodam”, Acta arithm., 34 (1978), 131–162 | MR | Zbl

[18] Teterin Yu. G., Predstavlenie chisel spinornymi rodami, Preprint LOMI. R-2-84, LOMI, L., 1984

[19] Schulze-Pillot R., “The tareihen positiv definiter quadratischer Formen”, Invent. math., 75 (1984), 283–299 | DOI | MR | Zbl

[20] Flicker Y., “Automorphic forms on covering groups of $GL9(2)$”, Invent. math., 57 (1980), 119–182 | DOI | MR | Zbl

[21] Golubeva E. P., Fomenko O. M., “O teta-ryadakh, assotsiirovannykh s neopredelennymi ternarnymi kvadratichnymi formami, i svyazannykh s nimi ryadakh Dirikhle”, Zap. nauchn. seminarov LOMI, 112, 1981, 41–50 | MR | Zbl

[22] Ramanathan K. G., “On the analytic theory of quadratic forms”, Acta arithm., 21 (1972), 423–436 | MR | Zbl

[23] Maass H., “Über die räumliche Vertelung der Punkte in Gittern mit indefiniter Metrik”, Math. Ann., 138 (1959), 287–315 | DOI | MR | Zbl

[24] Barban M. B., Vekhov P. P., “Summirovanie multiplikativnykh funktsii ot polinomov”, Matem. zametki, 5 (1969), 669–680 | MR | Zbl

[25] Lomadze G. A., “O predstavlenii chisel polozhitelnymi ternarnymi diagonalnymi kvadratichnymi formami”, Acta arithm., 19 (1971), 267–305; 387–407 | MR | Zbl