Time-optimal linear problems with controls discontinuous on a set of positive measure
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 277-291 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear problems of optimal time to the origin of coordinates with constant coefficients and constant convex set giving geometric constraints on the control are considered. It is proved that if the dimension of the phase space is greater than two, then arbitrarily small perturbations of such problems can lead to the situation that any optimal control is a function discontinuous on a set of positive measure in the “perturbed” problem for all initial states in some neighborhood of a given initial state $x_0$. Figures: 1. Bibliography: 14 titles.
@article{SM_1987_57_1_a17,
     author = {D. B. Silin},
     title = {Time-optimal linear problems with controls discontinuous on a~set of positive measure},
     journal = {Sbornik. Mathematics},
     pages = {277--291},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a17/}
}
TY  - JOUR
AU  - D. B. Silin
TI  - Time-optimal linear problems with controls discontinuous on a set of positive measure
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 277
EP  - 291
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a17/
LA  - en
ID  - SM_1987_57_1_a17
ER  - 
%0 Journal Article
%A D. B. Silin
%T Time-optimal linear problems with controls discontinuous on a set of positive measure
%J Sbornik. Mathematics
%D 1987
%P 277-291
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a17/
%G en
%F SM_1987_57_1_a17
D. B. Silin. Time-optimal linear problems with controls discontinuous on a set of positive measure. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 277-291. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a17/

[1] Silin D. B., “O variatsii i integriruemosti po Rimanu optimalnogo upravleniya v lineinykh sistemakh”, DAN SSSR, 257:3 (1981), 548–550 | MR | Zbl

[2] Silin D. B., “Integriruemost po Rimanu optimalnogo upravleniya v lineinykh zadachakh bystrodeistviya”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 854–864 | MR

[3] Silin D. B., “O polnom izmenenii optimalnogo upravleniya v lineinykh sistemakh”, Matem. zametki, 31:5 (1982), 761–772 | MR | Zbl

[4] Blagodatskikh V. I., Teoriya differentsialnykh vklyuchenii, Ch. 1, Izd-vo MGU, M., 1978

[5] Pontryagin L. S, Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[6] Tynyanskii N. T., Arutyunov A. V., “Lineinye protsessy optimalnogo bystrodeistviya”, Vestn. MGU. Ser. 15, Vychisl. matematika i kibernetika, 1979, no. 2, 32–37 | MR | Zbl

[7] Sokol V. A., Tynyanskii N. T., “Priblizhennyi metod resheniya lineinoi zadachi optimalnogo bystrodeistviya”, ZhVM i MF, 20:2 (1980), 277–288 | MR | Zbl

[8] Torp Dzh., Nachalnye glavy differentsialnoi geometrii, Mir, M., 1982 | MR

[9] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974 | MR

[10] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[11] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1975 | MR

[12] Boltyanskii V. G., “Lineinaya zadacha optimalnogo upravleniya”, Differents. uravneniya, 5:5 (1968), 783–799

[13] Moiseev N. N., Elementy teorii optimalnykh sistem, Nauka, M., 1975 | MR

[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR