On some classes of permutations with number-theoretic restrictions on the lengths of cycles
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 263-275
Cet article a éte moissonné depuis la source Math-Net.Ru
The set $S_n(M)$ of the permutations of degree $n$ having only cycles with lengths in a fixed set $M$ is investigated. The set $M$ is distinguished in the set of all positive integers by imposing certain number-theoretic conditions. The following assertions are proved. 1) If $|S_n(M)|$ is the cardinality of the finite set $S_n(M)$, then there exist positive constants $A$ and $\gamma$ with $0<\gamma<1$ such that $\frac{|S_n(M)|}{n!}=An^{\gamma-1}(1+O((\ln n)^{-1/2}(\ln\ln n)^2))$, $n\to\infty$. 2) If the uniform probability distribution is introduced on the finite set $S_n(M)$ and if $\eta_n$ is the number of cycles in a random permutation in $S_n(M)$, then the random variable $\eta_n'=(\eta_n-\gamma\ln n)(\gamma\ln n)^{-1/2}$ is asymptotically normal with parameters 0 and 1 as $n\to\infty$. Bibliography: 4 titles.
@article{SM_1987_57_1_a16,
author = {A. I. Pavlov},
title = {On some classes of permutations with number-theoretic restrictions on the lengths of cycles},
journal = {Sbornik. Mathematics},
pages = {263--275},
year = {1987},
volume = {57},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/}
}
A. I. Pavlov. On some classes of permutations with number-theoretic restrictions on the lengths of cycles. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 263-275. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/
[1] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1981 | MR
[2] Landau E., Handbuch der Lehre von Verteilung der Primzahlen, Teubner, Leipzig und Berlin, 1909
[3] Kholl M., Kombinatorika, Mir, M., 1970 | MR
[4] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, Ser. matem., 8:1 (1944), 3–48