On some classes of permutations with number-theoretic restrictions on the lengths of cycles
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 263-275
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The set $S_n(M)$ of the permutations of degree $n$ having only cycles with lengths in a fixed set $M$ is investigated. The set $M$ is distinguished in the set of all positive integers by imposing certain number-theoretic conditions. The following assertions are proved.
1) If $|S_n(M)|$ is the cardinality of the finite set $S_n(M)$, then there exist positive constants $A$ and $\gamma$ with $0\gamma1$ such that $\frac{|S_n(M)|}{n!}=An^{\gamma-1}(1+O((\ln n)^{-1/2}(\ln\ln n)^2))$, $n\to\infty$.
2) If the uniform probability distribution is introduced on the finite set $S_n(M)$ and if $\eta_n$ is the number of cycles in a random permutation in $S_n(M)$, then the random variable $\eta_n'=(\eta_n-\gamma\ln n)(\gamma\ln n)^{-1/2}$ is asymptotically normal with parameters 0 and 1 as $n\to\infty$.
Bibliography: 4 titles.
			
            
            
            
          
        
      @article{SM_1987_57_1_a16,
     author = {A. I. Pavlov},
     title = {On some classes of permutations with number-theoretic restrictions on the lengths of cycles},
     journal = {Sbornik. Mathematics},
     pages = {263--275},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/}
}
                      
                      
                    A. I. Pavlov. On some classes of permutations with number-theoretic restrictions on the lengths of cycles. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 263-275. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/
