On some classes of permutations with number-theoretic restrictions on the lengths of cycles
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 263-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The set $S_n(M)$ of the permutations of degree $n$ having only cycles with lengths in a fixed set $M$ is investigated. The set $M$ is distinguished in the set of all positive integers by imposing certain number-theoretic conditions. The following assertions are proved. 1) If $|S_n(M)|$ is the cardinality of the finite set $S_n(M)$, then there exist positive constants $A$ and $\gamma$ with $0<\gamma<1$ such that $\frac{|S_n(M)|}{n!}=An^{\gamma-1}(1+O((\ln n)^{-1/2}(\ln\ln n)^2))$, $n\to\infty$. 2) If the uniform probability distribution is introduced on the finite set $S_n(M)$ and if $\eta_n$ is the number of cycles in a random permutation in $S_n(M)$, then the random variable $\eta_n'=(\eta_n-\gamma\ln n)(\gamma\ln n)^{-1/2}$ is asymptotically normal with parameters 0 and 1 as $n\to\infty$. Bibliography: 4 titles.
@article{SM_1987_57_1_a16,
     author = {A. I. Pavlov},
     title = {On some classes of permutations with number-theoretic restrictions on the lengths of cycles},
     journal = {Sbornik. Mathematics},
     pages = {263--275},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/}
}
TY  - JOUR
AU  - A. I. Pavlov
TI  - On some classes of permutations with number-theoretic restrictions on the lengths of cycles
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 263
EP  - 275
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/
LA  - en
ID  - SM_1987_57_1_a16
ER  - 
%0 Journal Article
%A A. I. Pavlov
%T On some classes of permutations with number-theoretic restrictions on the lengths of cycles
%J Sbornik. Mathematics
%D 1987
%P 263-275
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/
%G en
%F SM_1987_57_1_a16
A. I. Pavlov. On some classes of permutations with number-theoretic restrictions on the lengths of cycles. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 263-275. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a16/

[1] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1981 | MR

[2] Landau E., Handbuch der Lehre von Verteilung der Primzahlen, Teubner, Leipzig und Berlin, 1909

[3] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[4] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, Ser. matem., 8:1 (1944), 3–48