On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 243-262

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem \begin{gather*} u_{tt}(x,t)=\operatorname{div}_x(A(x)\nabla_xu(x,t)),\qquad x\in\Omega,\quad t>0; \\ \frac{\partial u}{\partial N}\bigg|_{\partial\Omega}=0;\quad u|_{t=0}=\varphi(x);\quad u_t|_{t=0}=0 \end{gather*} is considered in the cylindrical region $\Omega\times(0,+\infty)$. A criterion for uniform stabilization (with respect to $x$ in $\Omega$) of the mean over $t$ of order $\alpha$, $\alpha>[n/2]+1$, of the solution $u(x,t)$ of this problem is proved for a rather broad class of unbounded domains $\Omega\subset\mathbf R^n$ (determined by conditions of isoperimetric type). Bibliography: 15 titles.
@article{SM_1987_57_1_a15,
     author = {Yu. A. Mikhailov},
     title = {On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation},
     journal = {Sbornik. Mathematics},
     pages = {243--262},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a15/}
}
TY  - JOUR
AU  - Yu. A. Mikhailov
TI  - On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 243
EP  - 262
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a15/
LA  - en
ID  - SM_1987_57_1_a15
ER  - 
%0 Journal Article
%A Yu. A. Mikhailov
%T On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation
%J Sbornik. Mathematics
%D 1987
%P 243-262
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a15/
%G en
%F SM_1987_57_1_a15
Yu. A. Mikhailov. On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 243-262. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a15/