On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 243-262
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem 
\begin{gather*}
u_{tt}(x,t)=\operatorname{div}_x(A(x)\nabla_xu(x,t)),\qquad x\in\Omega,\quad t>0;
\\
\frac{\partial u}{\partial N}\bigg|_{\partial\Omega}=0;\quad u|_{t=0}=\varphi(x);\quad u_t|_{t=0}=0
\end{gather*}
is considered in the cylindrical region $\Omega\times(0,+\infty)$.
A criterion for uniform stabilization (with respect to $x$ in $\Omega$) of the mean over $t$ of order $\alpha$, $\alpha>[n/2]+1$, of the solution $u(x,t)$ of this problem is proved for a rather broad class of unbounded domains $\Omega\subset\mathbf R^n$ (determined by conditions of isoperimetric type).
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1987_57_1_a15,
     author = {Yu. A. Mikhailov},
     title = {On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation},
     journal = {Sbornik. Mathematics},
     pages = {243--262},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a15/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Mikhailov TI - On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation JO - Sbornik. Mathematics PY - 1987 SP - 243 EP - 262 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a15/ LA - en ID - SM_1987_57_1_a15 ER -
Yu. A. Mikhailov. On uniform quasistabilization of solutions of the second mixed problem for a~second-order hyperbolic equation. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 243-262. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a15/
