On some algorithms for solving ill-posed extremal problems
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 229-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Variational regularizing algorithms are presented and justified for solving ill-posed extremal problems with an approximately given functional. The algorithms use “non a priori” ways of choosing the regularization parameter according to the generalized residual principle, the generalized quasisolution principle, and the generalized smoothing functional principle for extremal problems. Bibliography: 17 titles.
@article{SM_1987_57_1_a14,
     author = {A. S. Leonov},
     title = {On some algorithms for solving ill-posed extremal problems},
     journal = {Sbornik. Mathematics},
     pages = {229--242},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a14/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - On some algorithms for solving ill-posed extremal problems
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 229
EP  - 242
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a14/
LA  - en
ID  - SM_1987_57_1_a14
ER  - 
%0 Journal Article
%A A. S. Leonov
%T On some algorithms for solving ill-posed extremal problems
%J Sbornik. Mathematics
%D 1987
%P 229-242
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a14/
%G en
%F SM_1987_57_1_a14
A. S. Leonov. On some algorithms for solving ill-posed extremal problems. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 229-242. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a14/

[1] Tikhonov A. N., Vasilev F. P., “Metody resheniya nekorrektnykh ekstremalnykh zadach”, Banach center publ., 3 (1975), 297–342 | MR

[2] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[3] Liskovets O. A., Variatsionnye metody resheniya neustoichivykh zadach, Nauka i tekhnika, Minsk, 1981 | MR | Zbl

[4] Morozov V. A., “O regulyarizatsii nekotorykh klassov ekstremalnykh zadach”, Vychislitelnye metody i programmirovanie, 12, MGU, M., 1969, 24–37

[5] Leonov A. S., “O primenenii obobschennogo printsipa nevyazki dlya resheniya nekorrektnykh ekstremalnykh zadach”, DAN SSSR, 262:6 (1982), 1306–1310 | MR | Zbl

[6] Leonov A. S., “O kriteriyakh vybora parametra regulyarizatsii pri reshenii nekorrektnykh zadach”, Tr. Vsesoyuznoi shkoly-seminara “Metody resheniya nekorrektnykh zadach i ikh prilozheniya”, Novosibirsk, 1982, 77–84 | MR | Zbl

[7] Leonov A. S., “O vybore parametra regulyarizatsii dlya nelineinykh nekorrektnykh zadach s priblizhenno zadannym operatorom”, ZhVM i MF, 19:6 (1979), 1363–1376 | MR | Zbl

[8] Leonov A. S., “O svyazi metoda obobschennoi nevyazki i obobschennogo printsipa nevyazki dlya nelineinykh nekorrektnykh zadach”, ZhVM i MF, 22:4 (1982), 783–790 | MR | Zbl

[9] Morozov V. A., “O printsipe nevyazki pri reshenii operatornykh uravnenii metodom regulyarizatsii”, ZhVM i MF, 8:2 (1968), 295–309 | MR | Zbl

[10] Morozov V. A., “O regulyarizatsii nekorrektno postavlennykh zadach i vybore parametra regulyarizatsii”, ZhVM i MF, 6:1 (1966), 170–175 | MR

[11] Ivanov V. K., “O priblizhennom reshenii operatornykh uravnenii pervogo roda”, ZhVM i MF, 6:6 (1966), 1089–1094 | Zbl

[12] Goncharskii A. V., Leonov A. S, Yagola A. G., “Obobschennyi printsip nevyazki”, ZhVM i MF, 13:2 (1973), 294–302

[13] Yagola A. G., “Obobschennyi printsip nevyazki v refleksivnykh prostranstvakh”, DAN SSSR, 249:1 (1979), 71–73 | MR | Zbl

[14] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[15] Ivanov V. K., “O nekorrektno postavlennykh zadachakh”, Matem. sb., 61(103) (1963), 211–223 | Zbl

[16] Dei M., Normirovannye lineinye prostranstva, IL, M., 1961

[17] Kochikov I. V., Matvienko A. N., Yagola A. G., “Obobschennyi printsip nevyazki dlya resheniya nesovmestnykh uravnenii”, ZhVM i MF, 24:7 (1984), 1087–1090 | MR | Zbl