Pseudodifferential operators on $\mathbf R^n$ and limit operators
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 183-194

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fredholm property and spectral properties are considered for pseudodifferential operators on $\mathbf R^n$ with symbol satisfying the estimates \begin{equation} |\partial^\beta_x\partial^\alpha_\xi a(x,\xi)|\leqslant C_{\alpha\beta}\lambda(x,\xi)\qquad\forall\,\alpha,\beta,C_{\alpha\beta}>0, \end{equation} where $\lambda(x,\xi)$ is a basic weight function. As follows from (1), differentiation of the symbol does not improve its behavior at infinity. The family of limit operators is introduced for a pseudodifferential operator. A theorem is proved giving necessary and sufficient conditions for the Fredholm property in terms of invertibility of the family of limit operators. Some properties of the spectrum are formulated in the same terms. Examples are given which illustrate the main results. Bibliography: 14 titles.
@article{SM_1987_57_1_a11,
     author = {B. V. Lange and V. S. Rabinovich},
     title = {Pseudodifferential operators on $\mathbf R^n$ and limit operators},
     journal = {Sbornik. Mathematics},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/}
}
TY  - JOUR
AU  - B. V. Lange
AU  - V. S. Rabinovich
TI  - Pseudodifferential operators on $\mathbf R^n$ and limit operators
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 183
EP  - 194
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/
LA  - en
ID  - SM_1987_57_1_a11
ER  - 
%0 Journal Article
%A B. V. Lange
%A V. S. Rabinovich
%T Pseudodifferential operators on $\mathbf R^n$ and limit operators
%J Sbornik. Mathematics
%D 1987
%P 183-194
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/
%G en
%F SM_1987_57_1_a11
B. V. Lange; V. S. Rabinovich. Pseudodifferential operators on $\mathbf R^n$ and limit operators. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 183-194. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/