Pseudodifferential operators on $\mathbf R^n$ and limit operators
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 183-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fredholm property and spectral properties are considered for pseudodifferential operators on $\mathbf R^n$ with symbol satisfying the estimates \begin{equation} |\partial^\beta_x\partial^\alpha_\xi a(x,\xi)|\leqslant C_{\alpha\beta}\lambda(x,\xi)\qquad\forall\,\alpha,\beta,C_{\alpha\beta}>0, \end{equation} where $\lambda(x,\xi)$ is a basic weight function. As follows from (1), differentiation of the symbol does not improve its behavior at infinity. The family of limit operators is introduced for a pseudodifferential operator. A theorem is proved giving necessary and sufficient conditions for the Fredholm property in terms of invertibility of the family of limit operators. Some properties of the spectrum are formulated in the same terms. Examples are given which illustrate the main results. Bibliography: 14 titles.
@article{SM_1987_57_1_a11,
     author = {B. V. Lange and V. S. Rabinovich},
     title = {Pseudodifferential operators on $\mathbf R^n$ and limit operators},
     journal = {Sbornik. Mathematics},
     pages = {183--194},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/}
}
TY  - JOUR
AU  - B. V. Lange
AU  - V. S. Rabinovich
TI  - Pseudodifferential operators on $\mathbf R^n$ and limit operators
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 183
EP  - 194
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/
LA  - en
ID  - SM_1987_57_1_a11
ER  - 
%0 Journal Article
%A B. V. Lange
%A V. S. Rabinovich
%T Pseudodifferential operators on $\mathbf R^n$ and limit operators
%J Sbornik. Mathematics
%D 1987
%P 183-194
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/
%G en
%F SM_1987_57_1_a11
B. V. Lange; V. S. Rabinovich. Pseudodifferential operators on $\mathbf R^n$ and limit operators. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 183-194. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a11/

[1] Grushin V. V., “Psevdodifferentsialnye operatory v $\mathbf{R}^n$ s ogranichennymi simvolami”, Funkts. analiz i ego pril., 4:3 (1970), 37–50 | MR | Zbl

[2] Kumano-go H., Taniguchi K., “Oscillatory integrals of symbols of pseudo-differential operators on $\mathbf{R}^n$ and operators of Fredholm type”, Proc. Jap. Acad., 49 (1973), 397–402 | DOI | MR | Zbl

[3] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[4] Rabinovich V. S., “O neterovosti psevdodifferentsialnykh operatorov s simvolami klassa $S^m{}_{\rho,\zeta}$ $(0\leq\delta=\rho1)$”, Matem. zametki, 1980, no. 3, 457–467 | MR | Zbl

[5] Beals R., “A general calculus of pseudodifferential operators”, Duke Math. J., 42:1 (1975), 1–42 | DOI | MR | Zbl

[6] Hörmander L., “The Weyl calculus of pseudodifferential operators”, Commun. on Pure and Appl. Math., 32 (1979), 359–443 | DOI | MR | Zbl

[7] Favard J., “Sur les equations differentielles a coefficients presque-periodiques”, Acta Math., 51 (1927), 31–81 | DOI | MR | Zbl

[8] Mukhamadiev E. M., “O normalnoi razreshimosti i neterovosti ellipticheskikh operatorov na prostranstvakh funktsii na $\mathbf{R}^n$, ch. 1” (Kraevye zadachi matematicheskoi fiziki, 13), Zap. nauchn. seminarov LOMI, 110 (1981), 120–140 | MR | Zbl

[9] Mukhamadiev E. M., “Ob obratimosti differentsialnykh operatorov v chastnykh proizvodnykh ellipticheskogo tipa”, DAN SSSR, 205:6 (1972), 1292–1295 | Zbl

[10] Shubin M. A., “Pochti periodicheskie funktsii i differentsialnye operatory s chastnymi proizvodnymi”, UMN, 33:2 (1978), 3–47 | MR | Zbl

[11] Shubin M. A., “Spektralnaya teoriya i indeks ellipticheskikh operatorov s pochti periodicheskimi koeffitsientami”, UMN, 34:2 (1979), 95–136 | MR

[12] Calderon A. P., Vaillancourt R., “A class of bounded pseudo-differential operators”, Proc. Acad. Sci. USA, 69 (1972), 1185–1187 | DOI | MR | Zbl

[13] Kuapp A., Stein E. M., “Singular integrals and the principal series”, Proc. Nat. Acad. Sci. USA, 63 (1969), 458–476 | DOI

[14] Beals R., “Characterizations of pseudodifferential operators and applications”, Duke Math. J., 44:1 (1977), 45–58 | DOI | MR