Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 1-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathscr L$ be a union of finitely many smooth orientable bounded disjoint surfaces in $\mathbf R^n$ of various dimensions (between $1$ and $n-1$), and let $PC(\dot{\mathbf R}^n,\mathscr L)$ be the algebra of functions continuous on $\dot{\mathbf R}^n\setminus\operatorname{Int}\mathscr L$ ($\dot{\mathbf R}^n=\mathbf R^n\cup\{\infty\}$) and having discontinuities of homogeneous type on surfaces in $\mathscr L$. This article includes a description of the algebra of symbols for the algebra $\mathscr R$ generated by all the operators of the form $A=a(x)M$ acting in $L_2(\mathbf R^n)$, where $a(x)\in PC(\dot{\mathbf R}^n,\mathscr L)$ and $M=F^{-1}m(\xi)F$, with $F$ and $F^{-1}$ the direct and inverse Fourier transformations, respectively, and with $m(\xi)$ a homogeneous function on $\mathbf R^n$ of degree zero whose restriction to the unit sphere in $\mathbf R^n$ is continuous. A criterion for operators in $\mathscr R$ to be Noetherian operators is given. Bibliography: 25 titles.
@article{SM_1987_57_1_a0,
     author = {N. L. Vasilevskii},
     title = {Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type},
     journal = {Sbornik. Mathematics},
     pages = {1--19},
     year = {1987},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/}
}
TY  - JOUR
AU  - N. L. Vasilevskii
TI  - Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 1
EP  - 19
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/
LA  - en
ID  - SM_1987_57_1_a0
ER  - 
%0 Journal Article
%A N. L. Vasilevskii
%T Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type
%J Sbornik. Mathematics
%D 1987
%P 1-19
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/
%G en
%F SM_1987_57_1_a0
N. L. Vasilevskii. Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/

[1] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl

[2] Michlin S. G., Prössdorf S., Singuläre Integraloperatoren, Academie-Verlag, Berlin, 1980 | MR

[3] Simonenko I. B., “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii. Ch. I i II”, Izv. AN SSSR. Ser. matem., 29 (1965), 567–586, 757–782 | MR | Zbl

[4] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[5] L. Boutet de Monvel, “Boundary problems for pseudo-differential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[6] Plamenevskii B. A., “Ob algebrakh, porozhdennykh psevdodifferentsialnymi operatorami s izolirovannymi osobennostyami simvolov”, Problemy matemat. fiziki. Spektralnaya teoriya. Volnovye protsessy, 10, 1982, 209–240 | MR

[7] Plamenevskii B. A., “Ob algebrakh, porozhdennykh psevdodifferentsialnymi operatorami s izolirovannymi osobennostyami simvolov”, Dokl. AN SSSR, 248:2 (1979), 298–302 | MR | Zbl

[8] Plamenevskii B. A., Senichkin V. N., “O spektre $C^*$-algebr, porozhdennykh psevdodifferentsialnymi operatorami s izolirovannymi osobennostyami simvolov”, Dokl. AN SSSR, 261:6 (1981), 1304–1306 | MR | Zbl

[9] Plamenevskii B. A., Senichkin V. N., “O spektre $C^*$-algebr, porozhdennykh psevdodifferentsialnymi operatorami s razryvnymi simvolami”, Izv. AN SSSR. Ser. matem., 47:6 (1983), 1263–1284 | MR | Zbl

[10] Rempel S., Schulze B.-W., “Parametrices and Boundary Symbolic Calculas for Elliptic Boundary Problems without the Transmission Property”, Math. Nachr. B, 105 (1982), 45–149 | DOI | MR | Zbl

[11] Rempel S., Schulze B.-W., Index Theory for Elliptic Boundary Problems, Academie-Verlag, Berlin, 1982 | MR

[12] Schulze B.-W., “Pseudo-Differential Boundary Problems with Discontinuous Symbols”, Math. Nachr., 110 (1983), 263–277 | DOI | MR | Zbl

[13] Colella P., Cordes H. O., “The $C^*$-algebra of elliptic boundary problem”, Rocky Mountian Jour. Math., 10:1 (1980), 217–238 | MR | Zbl

[14] Cordes H. O., Elliptic Pseudo-differential Operators. An Abstract Theory, Lect. Notes Math. No. 756, Springer-Verlag, 1979

[15] Duduchava R., On multidimensional singular integral operators. I. The half-space case, Preprint 621 ; On multidimensional singular integral operators. II, The case of compact manifold, Preprint 622, Technische Hochschule, Darmstadt, 1981 | MR | Zbl

[16] Douglas R. G., Banach algebra techniques in operator theory, Academic Press, New York, London, 1972 | MR | Zbl

[17] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Izd-vo Shtiintsa, Kishinev, 1973 | MR

[18] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Miru, M., 1973 | MR

[19] Lance E. C., “Tensor products and nuclear $C^*$-algebras”, Operator Algebras and Applications. Proc. Symp. Pure Math., 38, pt. 1, Amer. Math. Soc., Providence, 1982, 379–399 | MR

[20] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, 1971 | MR | Zbl

[21] Dauns J., Hofmann K. H., “Representation of rings by sections”, Memoirs Amer. Mat. Soc., no. 83, Providence, 1968 | MR

[22] Varela J., “Duality of $C^*$-algebras”, Resent Advances in the Representation Theory of Rings and $C^*$-Algebras bv Continuous Sections, Memoirs Amer. Mat. Soc., no. 148, Providence, 1974, 97–108 | MR | Zbl

[23] Diksme Zh., $C^*$-algebry i ikh prilozheniya, Nauka, M., 1974

[24] Gokhberg I. Ts., Krupnik N. Ya., “Ob algebre, porozhdennoi odnomernymi singulyarnymi integralnymi operatorami i kusochno-nepreryvnymi koeffitsientami”, Funktsion. analiz i ego pril., 4:3 (1970), 26–36 | MR | Zbl

[25] Costabel M., “An inverse for the Gohberg–Krupnik symbol map”, Proc Royal Soc. Edinburg A, 87 (1980), 153–165 | MR | Zbl