Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type
Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 1-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathscr L$ be a union of finitely many smooth orientable bounded disjoint surfaces in $\mathbf R^n$ of various dimensions (between $1$ and $n-1$), and let $PC(\dot{\mathbf R}^n,\mathscr L)$ be the algebra of functions continuous on $\dot{\mathbf R}^n\setminus\operatorname{Int}\mathscr L$ ($\dot{\mathbf R}^n=\mathbf R^n\cup\{\infty\}$) and having discontinuities of homogeneous type on surfaces in $\mathscr L$. This article includes a description of the algebra of symbols for the algebra $\mathscr R$ generated by all the operators of the form $A=a(x)M$ acting in $L_2(\mathbf R^n)$, where $a(x)\in PC(\dot{\mathbf R}^n,\mathscr L)$ and $M=F^{-1}m(\xi)F$, with $F$ and $F^{-1}$ the direct and inverse Fourier transformations, respectively, and with $m(\xi)$ a homogeneous function on $\mathbf R^n$ of degree zero whose restriction to the unit sphere in $\mathbf R^n$ is continuous. A criterion for operators in $\mathscr R$ to be Noetherian operators is given.
Bibliography: 25 titles.
@article{SM_1987_57_1_a0,
author = {N. L. Vasilevskii},
title = {Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type},
journal = {Sbornik. Mathematics},
pages = {1--19},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/}
}
TY - JOUR AU - N. L. Vasilevskii TI - Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type JO - Sbornik. Mathematics PY - 1987 SP - 1 EP - 19 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/ LA - en ID - SM_1987_57_1_a0 ER -
%0 Journal Article %A N. L. Vasilevskii %T Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type %J Sbornik. Mathematics %D 1987 %P 1-19 %V 57 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/ %G en %F SM_1987_57_1_a0
N. L. Vasilevskii. Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/