@article{SM_1987_57_1_a0,
author = {N. L. Vasilevskii},
title = {Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type},
journal = {Sbornik. Mathematics},
pages = {1--19},
year = {1987},
volume = {57},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/}
}
TY - JOUR AU - N. L. Vasilevskii TI - Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type JO - Sbornik. Mathematics PY - 1987 SP - 1 EP - 19 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/ LA - en ID - SM_1987_57_1_a0 ER -
%0 Journal Article %A N. L. Vasilevskii %T Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type %J Sbornik. Mathematics %D 1987 %P 1-19 %V 57 %N 1 %U http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/ %G en %F SM_1987_57_1_a0
N. L. Vasilevskii. Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type. Sbornik. Mathematics, Tome 57 (1987) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/SM_1987_57_1_a0/
[1] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl
[2] Michlin S. G., Prössdorf S., Singuläre Integraloperatoren, Academie-Verlag, Berlin, 1980 | MR
[3] Simonenko I. B., “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii. Ch. I i II”, Izv. AN SSSR. Ser. matem., 29 (1965), 567–586, 757–782 | MR | Zbl
[4] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR
[5] L. Boutet de Monvel, “Boundary problems for pseudo-differential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl
[6] Plamenevskii B. A., “Ob algebrakh, porozhdennykh psevdodifferentsialnymi operatorami s izolirovannymi osobennostyami simvolov”, Problemy matemat. fiziki. Spektralnaya teoriya. Volnovye protsessy, 10, 1982, 209–240 | MR
[7] Plamenevskii B. A., “Ob algebrakh, porozhdennykh psevdodifferentsialnymi operatorami s izolirovannymi osobennostyami simvolov”, Dokl. AN SSSR, 248:2 (1979), 298–302 | MR | Zbl
[8] Plamenevskii B. A., Senichkin V. N., “O spektre $C^*$-algebr, porozhdennykh psevdodifferentsialnymi operatorami s izolirovannymi osobennostyami simvolov”, Dokl. AN SSSR, 261:6 (1981), 1304–1306 | MR | Zbl
[9] Plamenevskii B. A., Senichkin V. N., “O spektre $C^*$-algebr, porozhdennykh psevdodifferentsialnymi operatorami s razryvnymi simvolami”, Izv. AN SSSR. Ser. matem., 47:6 (1983), 1263–1284 | MR | Zbl
[10] Rempel S., Schulze B.-W., “Parametrices and Boundary Symbolic Calculas for Elliptic Boundary Problems without the Transmission Property”, Math. Nachr. B, 105 (1982), 45–149 | DOI | MR | Zbl
[11] Rempel S., Schulze B.-W., Index Theory for Elliptic Boundary Problems, Academie-Verlag, Berlin, 1982 | MR
[12] Schulze B.-W., “Pseudo-Differential Boundary Problems with Discontinuous Symbols”, Math. Nachr., 110 (1983), 263–277 | DOI | MR | Zbl
[13] Colella P., Cordes H. O., “The $C^*$-algebra of elliptic boundary problem”, Rocky Mountian Jour. Math., 10:1 (1980), 217–238 | MR | Zbl
[14] Cordes H. O., Elliptic Pseudo-differential Operators. An Abstract Theory, Lect. Notes Math. No. 756, Springer-Verlag, 1979
[15] Duduchava R., On multidimensional singular integral operators. I. The half-space case, Preprint 621 ; On multidimensional singular integral operators. II, The case of compact manifold, Preprint 622, Technische Hochschule, Darmstadt, 1981 | MR | Zbl
[16] Douglas R. G., Banach algebra techniques in operator theory, Academic Press, New York, London, 1972 | MR | Zbl
[17] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Izd-vo Shtiintsa, Kishinev, 1973 | MR
[18] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Miru, M., 1973 | MR
[19] Lance E. C., “Tensor products and nuclear $C^*$-algebras”, Operator Algebras and Applications. Proc. Symp. Pure Math., 38, pt. 1, Amer. Math. Soc., Providence, 1982, 379–399 | MR
[20] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, 1971 | MR | Zbl
[21] Dauns J., Hofmann K. H., “Representation of rings by sections”, Memoirs Amer. Mat. Soc., no. 83, Providence, 1968 | MR
[22] Varela J., “Duality of $C^*$-algebras”, Resent Advances in the Representation Theory of Rings and $C^*$-Algebras bv Continuous Sections, Memoirs Amer. Mat. Soc., no. 148, Providence, 1974, 97–108 | MR | Zbl
[23] Diksme Zh., $C^*$-algebry i ikh prilozheniya, Nauka, M., 1974
[24] Gokhberg I. Ts., Krupnik N. Ya., “Ob algebre, porozhdennoi odnomernymi singulyarnymi integralnymi operatorami i kusochno-nepreryvnymi koeffitsientami”, Funktsion. analiz i ego pril., 4:3 (1970), 26–36 | MR | Zbl
[25] Costabel M., “An inverse for the Gohberg–Krupnik symbol map”, Proc Royal Soc. Edinburg A, 87 (1980), 153–165 | MR | Zbl