On the recovery, from a countable collection of polynomial conservation laws, of action variables for the KdV equation in the class of almost periodic functions
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 417-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the indicated class a criterion is given for the unique recovery of the function of rotation number on the basis of a countable collection of polynomial conservation laws. Bibliography: 14 titles.
@article{SM_1987_56_2_a8,
     author = {M. V. Novitskii},
     title = {On the recovery, from a~countable collection of polynomial conservation laws, of action variables for the {KdV} equation in the class of almost periodic functions},
     journal = {Sbornik. Mathematics},
     pages = {417--428},
     year = {1987},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a8/}
}
TY  - JOUR
AU  - M. V. Novitskii
TI  - On the recovery, from a countable collection of polynomial conservation laws, of action variables for the KdV equation in the class of almost periodic functions
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 417
EP  - 428
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a8/
LA  - en
ID  - SM_1987_56_2_a8
ER  - 
%0 Journal Article
%A M. V. Novitskii
%T On the recovery, from a countable collection of polynomial conservation laws, of action variables for the KdV equation in the class of almost periodic functions
%J Sbornik. Mathematics
%D 1987
%P 417-428
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a8/
%G en
%F SM_1987_56_2_a8
M. V. Novitskii. On the recovery, from a countable collection of polynomial conservation laws, of action variables for the KdV equation in the class of almost periodic functions. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 417-428. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a8/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov, Nauka, M., 1980 | MR

[2] McKean H. P., Moerbeke van P., “The Spectrum of Hill's equation”, Inventiones math., 30 (1975), 217–274 | DOI | MR | Zbl

[3] Johnson P., Moser J., “The rotation number for almost periodic potentials”, Commun. Math. Phys., 84:3 (1982), 403–438 | DOI | MR | Zbl

[4] Fedosov B. V., Shubin M. A., “Indeks sluchainykh ellipticheskikh operatorov. I, II”, Matem. sb., 106(148) (1978), 108–140 ; 455–483 | MR | Zbl | Zbl

[5] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei, IL, M., 1955

[6] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[7] Marchenko V. A., Spektralnaya teoriya operatorov Shturma–Liuvillya, Naukova dumka, Kiev, 1972 | MR | Zbl

[8] Marchenko V. A., Ostrovskii I. V., “Kharakteristika spektra operatora Khilla”, Matem. sb., 97(139) (1975), 540–606 | Zbl

[9] Marchenko V. A., “O nekotorykh voprosakh approksimatsii nepreryvnykh funktsii na vsei pryamoi”, Uch. zap. Kharkovskogo un-ta, 34 (1950), 115–125

[10] Ronkin L. I., “Ob approksimatsii tselykh funktsii trigonometricheskimi polinomami”, DAN SSSR, XCII:5 (1953), 887–890 | MR

[11] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1978 | MR

[12] Pastur L. A., “Spektry sluchainykh samosopryazhennykh operatorov”, UMN, 28:1 (1973), 3–64 | MR | Zbl

[13] Dedik P. E., Shubin M. A., “Sluchainye psevdodifferentsialnye operatory i stabilizatsiya reshenii parabolicheskikh uravnenii so sluchainymi koeffitsientami”, Matem. sb., 113(155) (1980), 41–64 | MR | Zbl

[14] Kotany S., “Lyaponov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators”, Proc. Kyoto Stoch. Conf., 1982