Solution of the Dirichlet problem for some equations of Monge--Aamp\'ere type
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 403-415
Voir la notice de l'article provenant de la source Math-Net.Ru
The solvability of the problem
$$
F_m(u)=f(x,u,u_x)\geqslant\nu>0,\qquad u|_{\partial\Omega}=0,
$$
in $C^{l+2+\alpha}(\overline\Omega)$, $l\geqslant2$, is proved, where $F_m(u)$ is the sum of all the principal minors of order $m$ of the Hessian $F_n(u)\equiv\det(u_{xx})$, $\Omega$ is a bounded strictly convex region in $R^n$, $n\geq2$, with boundary $\partial\Omega$ of class $C^{l+2+\alpha}$, for $m = 1,2,3,n$, under certain restrictions on the occurrence of $u$ and $p$ as arguments in $f(x,u,p)$.
Bibliography: 21 titles.
@article{SM_1987_56_2_a7,
author = {N. M. Ivochkina},
title = {Solution of the {Dirichlet} problem for some equations of {Monge--Aamp\'ere} type},
journal = {Sbornik. Mathematics},
pages = {403--415},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/}
}
N. M. Ivochkina. Solution of the Dirichlet problem for some equations of Monge--Aamp\'ere type. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 403-415. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/