Solution of the Dirichlet problem for some equations of Monge–Aampére type
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 403-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of the problem $$ F_m(u)=f(x,u,u_x)\geqslant\nu>0,\qquad u|_{\partial\Omega}=0, $$ in $C^{l+2+\alpha}(\overline\Omega)$, $l\geqslant2$, is proved, where $F_m(u)$ is the sum of all the principal minors of order $m$ of the Hessian $F_n(u)\equiv\det(u_{xx})$, $\Omega$ is a bounded strictly convex region in $R^n$, $n\geq2$, with boundary $\partial\Omega$ of class $C^{l+2+\alpha}$, for $m = 1,2,3,n$, under certain restrictions on the occurrence of $u$ and $p$ as arguments in $f(x,u,p)$. Bibliography: 21 titles.
@article{SM_1987_56_2_a7,
     author = {N. M. Ivochkina},
     title = {Solution of the {Dirichlet} problem for some equations of {Monge{\textendash}Aamp\'ere} type},
     journal = {Sbornik. Mathematics},
     pages = {403--415},
     year = {1987},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - Solution of the Dirichlet problem for some equations of Monge–Aampére type
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 403
EP  - 415
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/
LA  - en
ID  - SM_1987_56_2_a7
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T Solution of the Dirichlet problem for some equations of Monge–Aampére type
%J Sbornik. Mathematics
%D 1987
%P 403-415
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/
%G en
%F SM_1987_56_2_a7
N. M. Ivochkina. Solution of the Dirichlet problem for some equations of Monge–Aampére type. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 403-415. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/

[1] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya nekotorykh uravnenii tipa Monzha–Ampera”, DAN SSSR, 279:4 (1984), 796–798 | MR | Zbl

[2] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[3] Aleksandrov A. D., “Zadacha Dirikhle dlya uravneniya $\operatorname{Det}\|z_{ij}\|=\psi(z_1,\dots,z_n,x_1,\dots,x_n)$”, Vestn. LGU. Matematika, mekhanika, astronomiya, 1958, no. 1, 5–24 | Zbl

[4] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR | Zbl

[5] Pogorelov A. V., “Apriornye otsenki dlya reshenii uravnenii $\det(z_{ij})=\varphi(z_1,\dots,z_n,z,x_1,\dots,x_n)$”, DAN SSSR, 272:4 (1983), 792–794 | MR | Zbl

[6] Krylov N. V., “O vyrozhdayuschikhsya nelineinykh ellipticheskikh uravneniyakh”, Matem. sb., 120(162), 311–330 | MR | Zbl

[7] Ivochkina N. M., “Klassicheskaya razreshimost zadachi Dirikhle dlya uravneniya Moksha–Ampera”, Zap. nauch. seminara LOMI, 131 (1983), 72–79 | MR | Zbl

[8] Ivochkina N. M., “Opisanie konusov ustoichivosti, porozhdaemykh differentsialnymi operatorami tipa Monzha–Ampera”, Matem. sb., 122(164) (1983), 265–275 | MR

[9] Ivochkina N. M., “Integralnyi metod barernykh funktsii i zadacha Dirikhle dlya uravnenii s operatorami tipa Monzha–Ampera”, Matem. sb., 112(154) (1980), 193–206 | MR | Zbl

[10] Krylov N. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya”, Izv. AN SSSR. Ser. matem., 46 (1982), 487–523 | MR

[11] Evans L. C., “Classical solutions of fully nonlinear, convex second order elliptic equations”, Comm. Pure and Appl. Math., 35:3 (1982), 333–363 | DOI | MR | Zbl

[12] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Spr.-Ver., Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl

[13] Krylov I. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya v oblasti”, Izv. AN SSSR. Ser. matem., 47 (1983), 75–108 | MR | Zbl

[14] Safonov M. V., “Granichnye otsenki v $C^{2+\alpha}$ dlya reshenii nelineinykh ellipticheskikh uravnenii”, UMN, 38:5 (1983), 146–147 | MR

[15] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge–Ampere equation”, Comm. Appl. Math., 37 (1984), 369–402 | MR | Zbl

[16] Ivochkina N. M., “O differentsialnykh uravneniyakh vtorogo poryadka s $d$-ellipticheskimi operatorami”, Tr. MIAN, 147 (1980), 40–56 | MR | Zbl

[17] Lions P.-L., “Sur les équations de Monge-Ampère I”, Manuscripta Math., 41 (1983), 1–44 | DOI | MR

[18] Ivochkina N. M., “Apriornaya otsenka $\|u\|_{C^2}$ vypuklykh reshenii zadachi Dirikhle dlya uravnenii Monzha–Ampera”, Zap. nauch. seminara LOMI, 96 (1980), 69–79 | MR | Zbl

[19] Krylov N. V., “O vyrozhdayuschikhsya nelineinykh ellipticheskikh uravneniyakh II”, Matem. sb., 121(163) (1983), 211–232 | MR | Zbl

[20] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[21] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR