Solution of the Dirichlet problem for some equations of Monge--Aamp\'ere type
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 403-415

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the problem $$ F_m(u)=f(x,u,u_x)\geqslant\nu>0,\qquad u|_{\partial\Omega}=0, $$ in $C^{l+2+\alpha}(\overline\Omega)$, $l\geqslant2$, is proved, where $F_m(u)$ is the sum of all the principal minors of order $m$ of the Hessian $F_n(u)\equiv\det(u_{xx})$, $\Omega$ is a bounded strictly convex region in $R^n$, $n\geq2$, with boundary $\partial\Omega$ of class $C^{l+2+\alpha}$, for $m = 1,2,3,n$, under certain restrictions on the occurrence of $u$ and $p$ as arguments in $f(x,u,p)$. Bibliography: 21 titles.
@article{SM_1987_56_2_a7,
     author = {N. M. Ivochkina},
     title = {Solution of the {Dirichlet} problem for some equations of {Monge--Aamp\'ere} type},
     journal = {Sbornik. Mathematics},
     pages = {403--415},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - Solution of the Dirichlet problem for some equations of Monge--Aamp\'ere type
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 403
EP  - 415
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/
LA  - en
ID  - SM_1987_56_2_a7
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T Solution of the Dirichlet problem for some equations of Monge--Aamp\'ere type
%J Sbornik. Mathematics
%D 1987
%P 403-415
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/
%G en
%F SM_1987_56_2_a7
N. M. Ivochkina. Solution of the Dirichlet problem for some equations of Monge--Aamp\'ere type. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 403-415. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a7/