On the representation of finite rings by matrices over commutative rings
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 379-402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author constructs an infinite series of finite rings $B$, $B^{(m)}$, $m\geqslant2$, which are not embeddable in rings of matrices over commutative rings, and describes their bases of identities and critical rings of the varieties they generate. He shows that finite rings from the ring varieties $\operatorname{var}B$, $\operatorname{var}B^{(m)}$, $m\geqslant2$, $m=(p-1)t+1$, are either representable by matrices over commutative rings or generate the respective varieties. Under a supplementary restriction on a variety $\mathfrak M$ with exponent $p^k$ it is shown that every finite ring from $\mathfrak M$ is representable by matrices over a commutative ring if and only if $\mathfrak M$ does not contain any of the rings $B$, $B^{(m)}$, $m\geqslant2$. Bibliography: 14 titles.
@article{SM_1987_56_2_a6,
     author = {Yu. N. Mal'tsev},
     title = {On the representation of finite rings by matrices over commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {379--402},
     year = {1987},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/}
}
TY  - JOUR
AU  - Yu. N. Mal'tsev
TI  - On the representation of finite rings by matrices over commutative rings
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 379
EP  - 402
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/
LA  - en
ID  - SM_1987_56_2_a6
ER  - 
%0 Journal Article
%A Yu. N. Mal'tsev
%T On the representation of finite rings by matrices over commutative rings
%J Sbornik. Mathematics
%D 1987
%P 379-402
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/
%G en
%F SM_1987_56_2_a6
Yu. N. Mal'tsev. On the representation of finite rings by matrices over commutative rings. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 379-402. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/

[1] Rowen L. H., Polynomial identities in ring theory, Academic Press, New York, 1980 | MR | Zbl

[2] Ananin A. Z., “Lokalno finitno approksimiruemye i lokalno predstavimye mnogoobraziya algebr”, Algebra i logika, 16:1 (1977), 3–23 | MR | Zbl

[3] Kublanovskii S. I., Lokalno finitno approksimiruemye i lokalno predstavimye mnogoobraziya assotsiativnykh kolets i algebr, Rukopis dep. v VINITI 1.12.82, No 6143–82 Dep.

[4] Maltsev Yu. N., “O mnogoobraziyakh assotsiativnykh algebr”, Algebra i logika, 15:5 (1976), 579–585 | MR

[5] Bergman G. M., “Some examples in $PI$ ring theory”, Israel J. Math., 18:3 (1974), 257–277 | DOI | MR | Zbl

[6] Lvov I. V., “O predstavlenii nilpotentnykh algebr matritsami”, Sib. mat. zhurn., 21:5 (1980), 158–161 | MR | Zbl

[7] Bergman G. M., Britten D. J., Lemire F. W., “Embedding rings in completed graded, rings. 3. Algebras over general $k$”, J. Algebra, 84:1 (1983), 42–61 | DOI | MR | Zbl

[8] Macdonald B. R., Finite rings with identity, Dekker, New York, 1974 | MR

[9] Siderov P. N., “Bazis tozhdestv algebry i treugolnykh matrits nad proizvolnym polem”, Pliska B'lgarski mat. stud., 1981, no. 2, 143–153 | MR

[10] Wilson R. S., “On structure of finite rings II”, Pacific J. Math, 51:1 (1974), 317–325 | MR

[11] Latyshev V. N., “Konechnaya baziruemost tozhdestv nekotorykh kolets”, UMN, 32:4 (1977), 259–260 | MR | Zbl

[12] Maltsev Yu. N., “Stroenie nekotorykh spetsialnykh kriticheskikh algebr”, Sib. mat. zhurn., 25:1 (1984), 91–100 | MR | Zbl

[13] Maltsev Yu. N., “O tozhdestvakh matrichnykh kolets”, Sib. mat. zhurn., 22:3 (1981), 213–214 | MR | Zbl

[14] Maltsev Yu. N., “O kriticheskikh koltsakh”, UMN, 38:2 (1983), 209–210 | MR | Zbl