On the representation of finite rings by matrices over commutative rings
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 379-402

Voir la notice de l'article provenant de la source Math-Net.Ru

The author constructs an infinite series of finite rings $B$, $B^{(m)}$, $m\geqslant2$, which are not embeddable in rings of matrices over commutative rings, and describes their bases of identities and critical rings of the varieties they generate. He shows that finite rings from the ring varieties $\operatorname{var}B$, $\operatorname{var}B^{(m)}$, $m\geqslant2$, $m=(p-1)t+1$, are either representable by matrices over commutative rings or generate the respective varieties. Under a supplementary restriction on a variety $\mathfrak M$ with exponent $p^k$ it is shown that every finite ring from $\mathfrak M$ is representable by matrices over a commutative ring if and only if $\mathfrak M$ does not contain any of the rings $B$, $B^{(m)}$, $m\geqslant2$. Bibliography: 14 titles.
@article{SM_1987_56_2_a6,
     author = {Yu. N. Mal'tsev},
     title = {On the representation of finite rings by matrices over commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {379--402},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/}
}
TY  - JOUR
AU  - Yu. N. Mal'tsev
TI  - On the representation of finite rings by matrices over commutative rings
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 379
EP  - 402
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/
LA  - en
ID  - SM_1987_56_2_a6
ER  - 
%0 Journal Article
%A Yu. N. Mal'tsev
%T On the representation of finite rings by matrices over commutative rings
%J Sbornik. Mathematics
%D 1987
%P 379-402
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/
%G en
%F SM_1987_56_2_a6
Yu. N. Mal'tsev. On the representation of finite rings by matrices over commutative rings. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 379-402. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a6/