On the Cauchy--Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 359-377

Voir la notice de l'article provenant de la source Math-Net.Ru

The analyticity of functions that satisfy the Cauchy-Riemann conditions and have summable modulus is established. Thus the Looman–Men'shov and Tolstov theorems are generalized. The theorem of Lindelöf is generalized (from the class of bounded functions to the class $L_1$) for certain kinds of domains. Sufficient criteria for continuity on the boundary for some classes of analytic functions are investigated. Bibliography: 21 titles.
@article{SM_1987_56_2_a5,
     author = {G. Kh. Sindalovskii},
     title = {On the {Cauchy--Riemann} conditions in the class of functions with summable modulus, and some boundary properties of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {359--377},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/}
}
TY  - JOUR
AU  - G. Kh. Sindalovskii
TI  - On the Cauchy--Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 359
EP  - 377
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/
LA  - en
ID  - SM_1987_56_2_a5
ER  - 
%0 Journal Article
%A G. Kh. Sindalovskii
%T On the Cauchy--Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions
%J Sbornik. Mathematics
%D 1987
%P 359-377
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/
%G en
%F SM_1987_56_2_a5
G. Kh. Sindalovskii. On the Cauchy--Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 359-377. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/