On the Cauchy–Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 359-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The analyticity of functions that satisfy the Cauchy-Riemann conditions and have summable modulus is established. Thus the Looman–Men'shov and Tolstov theorems are generalized. The theorem of Lindelöf is generalized (from the class of bounded functions to the class $L_1$) for certain kinds of domains. Sufficient criteria for continuity on the boundary for some classes of analytic functions are investigated. Bibliography: 21 titles.
@article{SM_1987_56_2_a5,
     author = {G. Kh. Sindalovskii},
     title = {On the {Cauchy{\textendash}Riemann} conditions in the class of functions with summable modulus, and some boundary properties of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {359--377},
     year = {1987},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/}
}
TY  - JOUR
AU  - G. Kh. Sindalovskii
TI  - On the Cauchy–Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 359
EP  - 377
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/
LA  - en
ID  - SM_1987_56_2_a5
ER  - 
%0 Journal Article
%A G. Kh. Sindalovskii
%T On the Cauchy–Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions
%J Sbornik. Mathematics
%D 1987
%P 359-377
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/
%G en
%F SM_1987_56_2_a5
G. Kh. Sindalovskii. On the Cauchy–Riemann conditions in the class of functions with summable modulus, and some boundary properties of analytic functions. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 359-377. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a5/

[1] Looman H., “Sur la généralisation des conditions de Cauchy–Riemann”, Nachr. Ges. Wiss. Göttingen, 1923, 97–108 | Zbl

[2] Menchoff D. E., “Sur la généralisation des conditions de Cauchy–Riemann”, Fund. Math., 25 (1935), 59–97 | Zbl

[3] Menchoff D. E., “Les conditions de monogénéite”, Act. sci. et ind., Paris, 329:2 (1936), 1–52

[4] Montel P., “Sur le différentielles totales et les fonctions monogénes”, C. R. Acad. Sc. Paris, 1913, 1820–1822 | Zbl

[5] Tolstov G. P., “Sur les fonctions pornées vérifaint les conditions de Cauchy–Riemann”, Matem. sb., 10(52) (1942), 79–86

[6] Tolstov G. P., “O krivolineinom i povtornom integrale”, Tr. MIAN, XXXV, 1950, 3–102 | MR | Zbl

[7] Trokhimchuk Yu. Yu., Nepreryvnye otobrazheniya i usloviya monogennosti, Fizmatizdat, M., 1963 | MR

[8] Disney S. A. R., Gray I. D., Morris S. A., “Is a Function That Satisfies the Cauchy–Riemann Equation Necessarily Analytic?”, The Australian Math. Soc. Gazette, 2:3 (1975), 67–81 | MR

[9] Gray I. D., Morris S. A., “When is a function That Satisfies the Cauchy–Riemann Equation Analytic”, The Amer. Math. Monthly, 85:4 (1978), 246–256 | DOI | MR | Zbl

[10] Sindalovskii G. Kh., “Ob analitichnosti funktsii iz klassa $L_1$ udovletvoryayuschikh usloviyam Koshi–Rimana”, DAN, 276:2 (1984), 303–305 | MR | Zbl

[11] Fesq R. M., “Green's Formula, Linear Continuity and Hausdorff Measure”, Trans. Amer. Math. Soc., 118 (1965), 105–112 | DOI | MR | Zbl

[12] Cohen P. J., “On Green's Theorem”, Proc Amer. Math. Soc., 10 (1959), 109–112 | DOI | MR | Zbl

[13] Lindelöf E., “Sur un principe général de l'analise et ses applications à la théorie de la représentation conforme”, Acta Soc. Sci. Fenn., 46:4 (1915), 1–35

[14] Meier K., “Hinreihende Bedingungen für die Regularität einer komplexen Funktion”, Comment. Math. Helvet. Zürich, 45 (1970), 256–264 | DOI | MR | Zbl

[15] Gross W., “Zum Verhalten analytischer Funktionen in der Umgebung singulärer Stellen”, Math. Z., 2 (1918), 243–294 | DOI | MR

[16] Gehring F. W., Lohwater A. I., “On the Lindelöf Theorem”, Math. Nachr., 19 (1958), 165–170 | DOI | MR | Zbl

[17] Dolzhenko E. P., Dobavlenie perevodchika k kn. Kollingvud E., Lovater A., Teoriya, predelnykh mnozhestv, Mir, M., 1971 | MR

[18] Golubev V. V, Odnoznachnye analiticheskie funktsii, Fizmatizdat, M., 1961 | MR

[19] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950

[20] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[21] Tolstov G. P., “Ob ogranichennykh funktsiyakh, udovletvoryayuschikh uravneniyu Laplasa”, Matem. sb., 29(71) (1951), 559–564 | MR | Zbl