On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 349-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Riemannian manifold is said to be parabolic if there does no exist a positive fundamental solution of the Laplace equation on it. The purpose of this article is to obtain geometric conditions, both necessary and sufficient, for a manifold to be parabolic. Bibliography: 11 titles.
@article{SM_1987_56_2_a4,
     author = {A. A. Grigor'yan},
     title = {On the existence of positive fundamental solutions of the {Laplace} equation on {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {349--358},
     year = {1987},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a4/}
}
TY  - JOUR
AU  - A. A. Grigor'yan
TI  - On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 349
EP  - 358
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a4/
LA  - en
ID  - SM_1987_56_2_a4
ER  - 
%0 Journal Article
%A A. A. Grigor'yan
%T On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds
%J Sbornik. Mathematics
%D 1987
%P 349-358
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a4/
%G en
%F SM_1987_56_2_a4
A. A. Grigor'yan. On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 349-358. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a4/

[1] Sario L., Nakai M., Wang C., Chung L. O., “Classification theory of Riemannian manifolds”, Lecture Notes Math., 605 (1977) | MR | Zbl

[2] Miklyukov V. M., “Ob odnom novom podkhode k teoreme Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Matem. sb., 108(150) (1979), 268–289 | MR

[3] Cheng S. Y., Yau S. T., “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl

[4] Karp C., “Subharmonic functions, harmonic mappings and isometric immersions”, Ann. Math. Studies, 1982, no. 102, 133–142 | Zbl

[5] Littman U., Stampakkya G., Vainberger G., “Regulyarnye tochki dlya ellipticheskikh uravnenii s razryvnymi koeffitsientami”, Matematika (sb. perevodov), 9:2 (1965), 72–97

[6] Grigoryan A. A., “O suschestvovanii funktsii Grina na mnogoobrazii”, UMN, 38:1 (1983), 161–162 | MR | Zbl

[7] Grigoryan A. A., “Svoistva reshenii uravneniya Laplasa–Beltrami i izoperimetricheskie neravenstva”, Respublikanskaya konferentsiya po nelineinym zadacham matematicheskoi fiziki (tez. dokl.), Donetsk, 1983

[8] Koboyasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[9] Moser J., “On Harnak's theorem for elliptic differential equations”, Comm. Pure Appl. Math., 14:3 (1961), 577–591 | DOI | MR | Zbl

[10] Grigoryan A. A., “Ob odnoi liuvillevoi teoreme na rimanovom mnogoobrazii”, Tr. Tbilisskogo un-ta. Matem. mekh., astron., 232–233:13–14 (1982), 49–76 | MR

[11] Khirsh M, Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl