Sharp error estimates of some two-level methods of solving the three-dimensional heat equation
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 529-544 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial-boundary value problem $\partial u/\partial t-\Delta u=f$ in $Q=\Omega\times(0,T)$, $u|_{\partial\Omega\times(0,T)}=0$, $u|_{t=0}=u_0$, is solved, where $\Omega$ is a three-dimensional rectangular parallelepiped. Two-level methods of second-order approximation are considered: families of projection and finite-difference schemes with a splitting operator as well as Crank–Nicolson schemes. Error estimates in $L_2(Q)$ of order $O(\tau^{1+\alpha}+h^2)$ for all $0\leqslant\alpha\leqslant1$ are derived. It is shown that the inclusion of values $0<\alpha\leqslant1$ yields sharpened estimates when $f$ is discontinuous. Accuracy of the estimates with respect to order – and in the case of Crank–Nicolson schemes their unimprovability – is proved. It is found that for difference schemes with splitting operator when $0<\alpha\leqslant1$, $f$ must have in $Q$ not only order $\alpha$ smoothness with respect to $t$ (as in the case of Crank–Nicolson schemes) but also order $2\alpha$ smoothness (in a certain weak sense) in the space variables. Only one scheme with splitting operator out of each family constitutes an important exception, a scheme equivalent to one proposed by J. Douglas and its projective analogue, and that only for $0<\alpha\leqslant1/2$. The situation described is qualitatively different from those studied previously in the literature. Bibliography: 17 titles.
@article{SM_1987_56_2_a14,
     author = {A. A. Zlotnik and I. D. Turetaev},
     title = {Sharp error estimates of some two-level methods of solving the three-dimensional heat equation},
     journal = {Sbornik. Mathematics},
     pages = {529--544},
     year = {1987},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a14/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - I. D. Turetaev
TI  - Sharp error estimates of some two-level methods of solving the three-dimensional heat equation
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 529
EP  - 544
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a14/
LA  - en
ID  - SM_1987_56_2_a14
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A I. D. Turetaev
%T Sharp error estimates of some two-level methods of solving the three-dimensional heat equation
%J Sbornik. Mathematics
%D 1987
%P 529-544
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1987_56_2_a14/
%G en
%F SM_1987_56_2_a14
A. A. Zlotnik; I. D. Turetaev. Sharp error estimates of some two-level methods of solving the three-dimensional heat equation. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 529-544. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a14/

[1] Yanenko N. N., Metod drobnykh shagov resheniya zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | Zbl

[2] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[3] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977 | MR | Zbl

[4] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach, Vyp. 2, Izd-vo MGU, M., 1972

[5] Bakhvalov N. S., “O svoistvakh optimalnykh metodov resheniya zadach matematicheskoi fiziki”, ZhVM i MF, 10:3 (1970), 555–568 | MR | Zbl

[6] Bakhvalov N. S., Ob optimizatsii chislennykh metodov, Mezhdunarodnyi kongress matematikov v Nitstse, 1970 g. Dokl. sovetskikh matematikov, Nauka, M., 1972 | MR

[7] Zlotnik A. A., “Otsenka skorosti skhodimosti v $L_2$ proektsionno–raznostnykh skhem dlya parabolicheskikh uravnenii”, ZhVM i MF, 18:6 (1978), 1454–1465 | MR | Zbl

[8] Zlotnik A. A., Otsenka pogreshnosti metoda peremennykh napravlenii dlya uravneniya teploprovodnosti s negladkimi dannymi, Preprint seminara “Metody vychislitelnoi i prikladnoi matematiki”, No 54, VTs SO AN SSSR, Novosibirsk, 1978

[9] Zlotnik A. A., Proektsionno-raznostnye skhemy dlya nestatsionarnykh zadach s negladkimi dannymi, Dis. ... kand. fiz.-matem. nauk, Izd-vo MGU, M., 1979

[10] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, ZhVM i MF, 20:2 (1980), 422–432 | MR | Zbl

[11] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti metodov peremennykh napravlenii dlya uravneniya teploprovodnosti”, Vestn. MGU. Ser. 15. Vychisl. matematika i kibernetika, 1983, no. 2, 8–13 | MR | Zbl

[12] Zlotnik A. A., Turetaev I. D., “O tochnykh otsenkakh pogreshnosti i optimalnosti dvukhsloinykh ekonomichnykh metodov resheniya uravneniya teploprovodnosti”, DAN SSSR, 242:6 (1983), 1306–1311 | MR

[13] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[14] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[15] Amanov T. I., Prostranstva funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976

[16] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[17] Volpert A. I., Khudyaev S. I., Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki, Nauka, M., 1975 | MR