Sharp order estimates for best rational approximations in classes of functions representable as convolutions
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 491-513
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $h(t)$ be a function of bounded variation, $[\operatorname{Var}h(t)]_0^{2\pi}\leqslant1$,
and $D_r(t)$ the Weyl kernel of order $r$, i.e.
$D_r(t)=\sum_{k=1}^\infty k^{-r}\cos\bigl(kt-\frac {r\pi}{2}\bigr)$, $r>0$.
Denote by $W_{2\pi}^r V$ and $W_{2\pi}^r V_0$ the classes of functions represented by the corresponding formulas
$$
f(k)=\frac{a_0}2+\frac1\pi\int_0^{2\pi}D_r(x-t)h(t)\,dt, \qquad f(x)=\frac1\pi\int_0^{2\pi}D_{r+1}(x-t)\,dh(t).
$$
The conjugate classes of functions $\widetilde{W_{2\pi}^r V}$ and $\widetilde{W_{2\pi}^r V_0}$ are also considered; they are convolutions of conjugate Weyl kernels with functions of bounded variation.
The following main result is proved:
$$
\sup_{f\in K^r}\mathbf R_n^T(f)\asymp\frac1{n^{r+1}},
$$
where $\mathbf R_n^T(f)$ is the best uniform approximation by trigonometric rational functions of order at most $n$, and $K^r$ is one of the classes
$$
W_{2\pi}^r V,\qquad W_{2\pi}^r V_0,\qquad\widetilde{W_{2\pi}^r V},\qquad\widetilde{W_{2\pi}^r V_0}.
$$ Bibliography: 13 titles.
@article{SM_1987_56_2_a12,
author = {V. N. Rusak},
title = {Sharp order estimates for best rational approximations in classes of functions representable as convolutions},
journal = {Sbornik. Mathematics},
pages = {491--513},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a12/}
}
TY - JOUR AU - V. N. Rusak TI - Sharp order estimates for best rational approximations in classes of functions representable as convolutions JO - Sbornik. Mathematics PY - 1987 SP - 491 EP - 513 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a12/ LA - en ID - SM_1987_56_2_a12 ER -
V. N. Rusak. Sharp order estimates for best rational approximations in classes of functions representable as convolutions. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 491-513. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a12/