Asymptotic expansion of the state density and the spectral function of a~Hill operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 473-490
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Complete asymptotic expansions are obtained for the integrated state density and the spectral function of a Hill operator with smooth potential. These expansions can be differentiated any number of times outside small neighborhoods of forbidden zones.
Bibliography: 18 titles.
			
            
            
            
          
        
      @article{SM_1987_56_2_a11,
     author = {D. Schenk and M. A. Shubin},
     title = {Asymptotic expansion of the state density and the spectral function of {a~Hill} operator},
     journal = {Sbornik. Mathematics},
     pages = {473--490},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_2_a11/}
}
                      
                      
                    TY - JOUR AU - D. Schenk AU - M. A. Shubin TI - Asymptotic expansion of the state density and the spectral function of a~Hill operator JO - Sbornik. Mathematics PY - 1987 SP - 473 EP - 490 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_56_2_a11/ LA - en ID - SM_1987_56_2_a11 ER -
D. Schenk; M. A. Shubin. Asymptotic expansion of the state density and the spectral function of a~Hill operator. Sbornik. Mathematics, Tome 56 (1987) no. 2, pp. 473-490. http://geodesic.mathdoc.fr/item/SM_1987_56_2_a11/
