Nonlocal almost differential operators and interpolation by functions with sparse spectrum
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 131-140
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $k$ be a measurable function on $\mathbf R$. Define an operator $\mathscr L_k\colon f\to\mathscr F^{-1}(k\mathscr F(f))$, where $f\in L^2(\mathbf R)$ and $\mathscr F$ is the Fourier transform. Let $\mathscr D_k=\{f\in L^2(\mathbf R):k\mathscr F(f)\in L^2(\mathbf R)\}$ be its domain. The operator $\mathscr L_k$ is called local if $f|E=0$ implies $\mathscr L_k(f)|E=0$ for $E\subset\mathbf R$ with $\operatorname{mes} E>0$. An entire function $g$ of order zero is constructed for which the operator $\mathscr L_g$ is not local. Let $W$ be the Wiener algebra of absolutely convergent trigonometric series. We prove a theorem on correction in the spirit of Luzin's theorem: a condition is exhibited on a set $A$ of integers under which each function of $W$ can be corrected on a set of arbitrarily small measure so that the spectrum of the corrected function (also in $W$) is contained in $A$.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1987_56_1_a8,
     author = {P. P. Kargaev},
     title = {Nonlocal almost differential operators and interpolation by functions with sparse spectrum},
     journal = {Sbornik. Mathematics},
     pages = {131--140},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a8/}
}
                      
                      
                    P. P. Kargaev. Nonlocal almost differential operators and interpolation by functions with sparse spectrum. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 131-140. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a8/
