The symmetrization method in problems on nonoverlapping domains
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 107-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach to the use of symmetrization is considered. Sterner symmetrization is taken as the main tool. An arbitrary symmetrization transformation connected with a given quadratic differential $Q(z)dz^2$ is obtained by successive application of the mappng $\zeta=\int Q^{1/2}(z)\,dz$ and Steiner symmetrization. As a consequence of the main theorem, the corresponding results of Lavrent'ev, Goluzin, Jenkins, and others are refined and generalized to the case of domains of arbitrary connectivity (not necessarily having a filling). Bibliography: 21 titles.
@article{SM_1987_56_1_a6,
     author = {V. N. Dubinin},
     title = {The symmetrization method in problems on nonoverlapping domains},
     journal = {Sbornik. Mathematics},
     pages = {107--119},
     year = {1987},
     volume = {56},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - The symmetrization method in problems on nonoverlapping domains
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 107
EP  - 119
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/
LA  - en
ID  - SM_1987_56_1_a6
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T The symmetrization method in problems on nonoverlapping domains
%J Sbornik. Mathematics
%D 1987
%P 107-119
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/
%G en
%F SM_1987_56_1_a6
V. N. Dubinin. The symmetrization method in problems on nonoverlapping domains. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/

[1] Kheiman V. K., Mnogolistnye funktsii, IL, M., 1960

[2] Dzhenkins Dzh., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962

[3] Baernstein A., “Integral means, univalent functions and circular symmetrization”, Acta math., 133:3–4 (1974), 139–169 | DOI | MR

[4] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl

[5] Marcus M., “Transformations of domains in the plane and applications in the theory of functions”, Pacif. J. Math., 14:2 (1964), 613–626 | MR | Zbl

[6] Mityuk I. P., “Pro odne uzagalnennya simetrizatsii Segë”, DAN URSR, 1969, no. 10, 889–891 | Zbl

[7] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[8] Lavrentev M. A., “K teorii konformnykh otobrazhenii”, Tr. MIAN, 5, 1934, 159–245 | Zbl

[9] Kufarev P. P., Fales A. E., “Ob odnoi ekstremalnoi zadache dlya dopolnitelnykh oblastei”, DAN SSSR, 81:6 (1951), 995–998 | MR | Zbl

[10] Kolbina L. I., “Nekotorye ekstremalnye zadachi v konformnom otobrazhenii”, DAN SSSR, 84:5 (1952), 865–868 | MR

[11] Tamrazov P. M., “Teoremy pokrytiya linii pri konformnom otobrazhenii”, Matem. sb., 66(108) (1965), 502–524 | MR | Zbl

[12] Lavrentev M. A., Shepelëv V. M., “Sur la reprèsentation conforme”, Compt. Rend. Acad. Sci. Paris, 191 (1930), 1426–1427

[13] Rengel E., “Uber einige Schlitztheoreme der konformen Abbildung”, Scnr. Math. Sem. und Inst, für angew. Math. Univ. Berlin, 1:4 (1933), 141–162 | Zbl

[14] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, t. 2, IL, M., 1962

[15] Jenkins J. A., “On the existence of certain general extremal metrics”, Ann. Math., 66 (1957), 440–453 | DOI | MR | Zbl

[16] Kuzmina G. V., Moduli semeistv krivykh i kvadratichnye differentsialy, Tr. MIAN, 139, 1980 | MR | Zbl

[17] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[18] Hayman W. K., “Some applications of the transfinite diameter to the theory of functions”, J. Anas. Math., 1 (1951), 155–179 | DOI | MR | Zbl

[19] Dubinin V. I, “O proizvedenii vnutrennikh radiusov “chastichno nenalegayuschikh” oblastei”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 24–31 | MR

[20] Jenkins J. A., “On certain problems of minimal capacity”, Illinois J. Math., 10 (1966), 460–465 | MR | Zbl

[21] Mityuk I. P., “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei”, DAN SSSR, 157:2 (1964), 268–270 | Zbl