The symmetrization method in problems on nonoverlapping domains
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 107-119

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the use of symmetrization is considered. Sterner symmetrization is taken as the main tool. An arbitrary symmetrization transformation connected with a given quadratic differential $Q(z)dz^2$ is obtained by successive application of the mappng $\zeta=\int Q^{1/2}(z)\,dz$ and Steiner symmetrization. As a consequence of the main theorem, the corresponding results of Lavrent'ev, Goluzin, Jenkins, and others are refined and generalized to the case of domains of arbitrary connectivity (not necessarily having a filling). Bibliography: 21 titles.
@article{SM_1987_56_1_a6,
     author = {V. N. Dubinin},
     title = {The symmetrization method in problems on nonoverlapping domains},
     journal = {Sbornik. Mathematics},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - The symmetrization method in problems on nonoverlapping domains
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 107
EP  - 119
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/
LA  - en
ID  - SM_1987_56_1_a6
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T The symmetrization method in problems on nonoverlapping domains
%J Sbornik. Mathematics
%D 1987
%P 107-119
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/
%G en
%F SM_1987_56_1_a6
V. N. Dubinin. The symmetrization method in problems on nonoverlapping domains. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a6/