On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 79-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author studies the geometric properties of the group of volume-preserving diffeomorphisms of a region. This group is the configuration space of an ideal incompressible fluid, the trajectories of the motion of the fluid in the absence of external forces being geodesics on the group. The author constructs configurations of the fluid in a 3-dimensional cube which cannot be connected in the group of diffeomorphisms by a trajectory of minimal length. This shows the difficulty of applying the variational method to construct nonstationary flows in the 3-dimensional case. He shows that in the 3-dimensional case the group of diffeomorphisms has finite diameter, in contrast to the 2-dimensional case. He describes completion (as a metric space) of the group of volume-preserving diffeomorphisms of a 3-dimensional region; it consists of all measurable, not necessarily invertible volume-preserving maps of the region into itself. Bibliography: 6 titles.
@article{SM_1987_56_1_a5,
     author = {A. I. Shnirel'man},
     title = {On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid},
     journal = {Sbornik. Mathematics},
     pages = {79--105},
     year = {1987},
     volume = {56},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a5/}
}
TY  - JOUR
AU  - A. I. Shnirel'man
TI  - On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 79
EP  - 105
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a5/
LA  - en
ID  - SM_1987_56_1_a5
ER  - 
%0 Journal Article
%A A. I. Shnirel'man
%T On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid
%J Sbornik. Mathematics
%D 1987
%P 79-105
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a5/
%G en
%F SM_1987_56_1_a5
A. I. Shnirel'man. On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 79-105. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a5/

[1] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92 (1970), 102–163 ; Математика, 17:5 (1973), 142–167 ; 6, 111–146 | DOI | MR | Zbl | Zbl

[2] Arnold V., “Sur la géométrie differentielle des groupes de Lie de dimension infinie et ces aoplications a l'hydrodynamique des fluides parfaits”, Ann. Inst. Fouries, Grenoble, 16:1 (1966), 319–361 | MR | Zbl

[3] Yudovich V. I., “Dvumernaya nestatsionarnaya zadacha o protekanii idealnoi neszhimaemoi zhidkosti skvoz zadannuyu oblast”, Matem. sb., 64(106) (1964), 552–588

[4] Kurant R., Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953

[5] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[6] Krygin A. B., “Prodolzhenie diffeomorfizmov, sokhranyayuschikh ob'em”, Funktsion. analiz i ego pril., 5:2 (1971), 72–76 | MR | Zbl