Imbedding theorems for Banach spaces of infinitely differentiable functions
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 63-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic conditions are obtained for imbedding of the spaces $$ W^{\infty}\{a_n,p,r\}_{(G)}=\biggl\{u(x)\in C^\infty(G):\sum_{n=0}^\infty a_n\|D^nu\| _r^p\infty\biggr\}, $$ where $G$ can be a closed interval, the line, a ray, or the circle. The imbedding conditions depend on the form of the domain. Bibliography: 15 titles.
@article{SM_1987_56_1_a4,
     author = {G. S. Balashova},
     title = {Imbedding theorems for {Banach} spaces of infinitely differentiable functions},
     journal = {Sbornik. Mathematics},
     pages = {63--78},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/}
}
TY  - JOUR
AU  - G. S. Balashova
TI  - Imbedding theorems for Banach spaces of infinitely differentiable functions
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 63
EP  - 78
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/
LA  - en
ID  - SM_1987_56_1_a4
ER  - 
%0 Journal Article
%A G. S. Balashova
%T Imbedding theorems for Banach spaces of infinitely differentiable functions
%J Sbornik. Mathematics
%D 1987
%P 63-78
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/
%G en
%F SM_1987_56_1_a4
G. S. Balashova. Imbedding theorems for Banach spaces of infinitely differentiable functions. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/