Imbedding theorems for Banach spaces of infinitely differentiable functions
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 63-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algebraic conditions are obtained for imbedding of the spaces $$ W^{\infty}\{a_n,p,r\}_{(G)}=\biggl\{u(x)\in C^\infty(G):\sum_{n=0}^\infty a_n\|D^nu\| _r^p<\infty\biggr\}, $$ where $G$ can be a closed interval, the line, a ray, or the circle. The imbedding conditions depend on the form of the domain. Bibliography: 15 titles.
@article{SM_1987_56_1_a4,
     author = {G. S. Balashova},
     title = {Imbedding theorems for {Banach} spaces of infinitely differentiable functions},
     journal = {Sbornik. Mathematics},
     pages = {63--78},
     year = {1987},
     volume = {56},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/}
}
TY  - JOUR
AU  - G. S. Balashova
TI  - Imbedding theorems for Banach spaces of infinitely differentiable functions
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 63
EP  - 78
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/
LA  - en
ID  - SM_1987_56_1_a4
ER  - 
%0 Journal Article
%A G. S. Balashova
%T Imbedding theorems for Banach spaces of infinitely differentiable functions
%J Sbornik. Mathematics
%D 1987
%P 63-78
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/
%G en
%F SM_1987_56_1_a4
G. S. Balashova. Imbedding theorems for Banach spaces of infinitely differentiable functions. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a4/

[1] Dubinskii Yu. A., “Predely banakhovykh prostranstv. Teoremy vlozheniya. Primeneniya k prostranstvam Soboleva beskonechnogo poryadka”, Matem. sb., 110(152) (1979), 428–439 | MR | Zbl

[2] Balashova G. S., “O nekotorykh teoremakh vlozheniya prostranstv beskonechno differentsiruemykh funktsii”, DAN SSSR, 247:6 (1979), 1301–1304 | MR | Zbl

[3] Balashova G. S., “Teoremy vlozheniya nekotorykh prostranstv beskonechno differentsiruemykh funktsii i nelineinye uravneniya s podchinennymi chlenami”, DAN SSSR, 263:5 (1982), 1037–1040 | MR

[4] Dubinskii Yu. A., “O netrivialnosti nekotorykh klassov funktsii i razreshimost nelineinykh obyknovennykh differentsialnykh uravnenii beskonechnogo poryadka. II”, Differents. uravneniya, 11:6 (1975), 1190–1200 | MR | Zbl

[5] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955

[6] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Uchenye zap. MGU, 1939, no. 30, 3–16

[7] Stein E. M., “Functions of exponentional type”, Ann. of Math., 65 (1957), 582–592 | DOI | MR | Zbl

[8] Dubinskii Yu. A., “O netrivialnosti nekotorykh klassov funktsii i razreshimosti nelineinykh obyknovennykh differentsialnykh uravnenii beskonechnogo poryadka”, Differents. uravneniya, 10:2 (1974), 231–240 | MR | Zbl

[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. II, Nauka, M., 1969

[10] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, 1976 | MR

[11] Stechkin S. B., “O neravenstvakh mezhdu verkhnimi granyami proizvodnykh proizvolnoi funktsii pa polupryamoi”, Matem. zametki, 1:6 (1967), 665–674 | Zbl

[12] Lyubich Yu. I., “O neravenstvakh mezhdu stepenyami lineinogo operatora”, Izv. AN SSSR. Ser. matem., 24:6 (1960), 825–864 | MR

[13] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale”, Tr. MIAN, 156 (1980), 22–29 | MR | Zbl

[14] Ligun A. A., “Tochnye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti periodicheskikh funktsii”, Issledovaniya po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, 4, Dnepropetrovsk, 1973, 61–65 | MR

[15] Dubinskii Yu. A., “Predely monotonnykh posledovatelnostei banakhovykh prostranstv”, DAN SSSR, 251:3 (1980), 537–540 | MR | Zbl