A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 262-278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that there exists a continuous function defined on $[0,1]k^2$ whose double Fourier–Walsh–Paley series diverges almost everywhere in the sense of Pringsheim.
Bibliography: 9 titles
			
            
            
            
          
        
      @article{SM_1987_56_1_a15,
     author = {R. D. Getsadze},
     title = {A~continuous function with multiple {Fourier} series in the {Walsh--Paley} system that diverges almost everywhere},
     journal = {Sbornik. Mathematics},
     pages = {262--278},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/}
}
                      
                      
                    TY - JOUR AU - R. D. Getsadze TI - A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere JO - Sbornik. Mathematics PY - 1987 SP - 262 EP - 278 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/ LA - en ID - SM_1987_56_1_a15 ER -
R. D. Getsadze. A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 262-278. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/
