A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 262-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that there exists a continuous function defined on $[0,1]k^2$ whose double Fourier–Walsh–Paley series diverges almost everywhere in the sense of Pringsheim. Bibliography: 9 titles
@article{SM_1987_56_1_a15,
     author = {R. D. Getsadze},
     title = {A~continuous function with multiple {Fourier} series in the {Walsh{\textendash}Paley} system that diverges almost everywhere},
     journal = {Sbornik. Mathematics},
     pages = {262--278},
     year = {1987},
     volume = {56},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/}
}
TY  - JOUR
AU  - R. D. Getsadze
TI  - A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 262
EP  - 278
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/
LA  - en
ID  - SM_1987_56_1_a15
ER  - 
%0 Journal Article
%A R. D. Getsadze
%T A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere
%J Sbornik. Mathematics
%D 1987
%P 262-278
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/
%G en
%F SM_1987_56_1_a15
R. D. Getsadze. A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 262-278. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/

[1] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[3] Kolmogorof A., “Une serie de Fourier Lebesque divergent presque partout”, Fund. Math., 4 (1923), 324–328 | Zbl

[4] Stein E. M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl

[5] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl

[6] Billard P., “Sur la convergence presque partout des series de Fourier–Walsh des fonctions de l'espace $L^2\bigl([0, 1]\bigr)$”, Studia Math., 28 (1966–1967), 363–388 | MR

[7] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[8] Fine N. J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[9] Getsadze R. D., “Nepreryvnaya funktsiya s raskhodyaschimsya pochti vsyudu kratnym ryadom Fure po sisteme Uolsha–Peli”, Soobsch. AN GSSR, 108:3 (1982), 497–500 | MR