A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 262-278

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a continuous function defined on $[0,1]k^2$ whose double Fourier–Walsh–Paley series diverges almost everywhere in the sense of Pringsheim. Bibliography: 9 titles
@article{SM_1987_56_1_a15,
     author = {R. D. Getsadze},
     title = {A~continuous function with multiple {Fourier} series in the {Walsh--Paley} system that diverges almost everywhere},
     journal = {Sbornik. Mathematics},
     pages = {262--278},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/}
}
TY  - JOUR
AU  - R. D. Getsadze
TI  - A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 262
EP  - 278
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/
LA  - en
ID  - SM_1987_56_1_a15
ER  - 
%0 Journal Article
%A R. D. Getsadze
%T A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere
%J Sbornik. Mathematics
%D 1987
%P 262-278
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/
%G en
%F SM_1987_56_1_a15
R. D. Getsadze. A~continuous function with multiple Fourier series in the Walsh--Paley system that diverges almost everywhere. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 262-278. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/