@article{SM_1987_56_1_a15,
author = {R. D. Getsadze},
title = {A~continuous function with multiple {Fourier} series in the {Walsh{\textendash}Paley} system that diverges almost everywhere},
journal = {Sbornik. Mathematics},
pages = {262--278},
year = {1987},
volume = {56},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/}
}
TY - JOUR AU - R. D. Getsadze TI - A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere JO - Sbornik. Mathematics PY - 1987 SP - 262 EP - 278 VL - 56 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/ LA - en ID - SM_1987_56_1_a15 ER -
R. D. Getsadze. A continuous function with multiple Fourier series in the Walsh–Paley system that diverges almost everywhere. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 262-278. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a15/
[1] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR
[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR
[3] Kolmogorof A., “Une serie de Fourier Lebesque divergent presque partout”, Fund. Math., 4 (1923), 324–328 | Zbl
[4] Stein E. M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl
[5] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl
[6] Billard P., “Sur la convergence presque partout des series de Fourier–Walsh des fonctions de l'espace $L^2\bigl([0, 1]\bigr)$”, Studia Math., 28 (1966–1967), 363–388 | MR
[7] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl
[8] Fine N. J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl
[9] Getsadze R. D., “Nepreryvnaya funktsiya s raskhodyaschimsya pochti vsyudu kratnym ryadom Fure po sisteme Uolsha–Peli”, Soobsch. AN GSSR, 108:3 (1982), 497–500 | MR