Approximate recovery of periodic functions of several variables
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 249-261

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear method is constructed for recovery of functions with bounded mixed difference from values at a fixed number of points. The method gives a recovery error close to the corresponding Kolmogorov width of the class of functions with bounded mixed difference. Bibliography: 13 titles.
@article{SM_1987_56_1_a14,
     author = {V. N. Temlyakov},
     title = {Approximate recovery of periodic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {249--261},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a14/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Approximate recovery of periodic functions of several variables
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 249
EP  - 261
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a14/
LA  - en
ID  - SM_1987_56_1_a14
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Approximate recovery of periodic functions of several variables
%J Sbornik. Mathematics
%D 1987
%P 249-261
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1987_56_1_a14/
%G en
%F SM_1987_56_1_a14
V. N. Temlyakov. Approximate recovery of periodic functions of several variables. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 249-261. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a14/