Trace identities and central polynomials in the matrix superalgebras~$M_{n,k}$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 187-206
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A complete description is given of trace identities for matrix superalgebras
$M_{n,k}=\biggl\{\begin{pmatrix}
a_{11}  a_{12}
\\
a_{21}  a_{22}
\end{pmatrix}\biggr\}$,
where $a_{11}$ and $a_{22}$ are square matrices of orders $n$ and $k$ respectively over the even elements of a Grassmann algebra $G$ with countably many generators, while $a_{12}$ and $a_{21}$ are $n\times k$ and $k\times n$ rectangular matrices respectively over the odd elements of $G$. A relation is found between multilinear trace identities of degree $ l$ in the algebra $M_{n,k}$ and irreducible representations of a symmetric group of order $(l+1)!\,$. It is proved that over a field of characteristic zero all trace identities of $M_{n,k}$ follow from identities of degree $nk+n+k$ that hold in that algebra. For every algebra $M_{n,k}$ over a field of arbitrary characteristic a central polynomial is given explicitly.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1987_56_1_a11,
     author = {Yu. P. Razmyslov},
     title = {Trace identities and central polynomials in the matrix superalgebras~$M_{n,k}$},
     journal = {Sbornik. Mathematics},
     pages = {187--206},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a11/}
}
                      
                      
                    Yu. P. Razmyslov. Trace identities and central polynomials in the matrix superalgebras~$M_{n,k}$. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 187-206. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a11/
                  
                