Irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over a~field of positive characteristic
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 19-32
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over an algebraically closed field of characteristic $p>n$ are described. It is proved that an irreducible representation has maximal dimension only if its central character is a nonsingular point of the Zassenhaus manifold.
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1987_56_1_a1,
     author = {A. N. Panov},
     title = {Irreducible representations of the {Lie} algebra $\mathrm{sl}(n)$ over a~field of positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1987_56_1_a1/}
}
                      
                      
                    TY  - JOUR
AU  - A. N. Panov
TI  - Irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over a~field of positive characteristic
JO  - Sbornik. Mathematics
PY  - 1987
SP  - 19
EP  - 32
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1987_56_1_a1/
LA  - en
ID  - SM_1987_56_1_a1
ER  - 
                      
                      
                    A. N. Panov. Irreducible representations of the Lie algebra $\mathrm{sl}(n)$ over a~field of positive characteristic. Sbornik. Mathematics, Tome 56 (1987) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/SM_1987_56_1_a1/
                  
                