The linear theory of Landau damping
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 437-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The one-dimensional system of Vlasov equations linearized at the stationary solution of the nonlinear system is considered. A rigorous theory of Landau damping is presented. A new integral equation with a shift for the electric field is derived in a more general case, and the uniqueness of its solution is proved. A quasiclassical approximation for the linear system of Vlasov equations is obtained. Bibliography: 15 titles.
@article{SM_1986_55_2_a7,
     author = {V. P. Maslov and M. V. Fedoryuk},
     title = {The linear theory of {Landau} damping},
     journal = {Sbornik. Mathematics},
     pages = {437--465},
     year = {1986},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a7/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - M. V. Fedoryuk
TI  - The linear theory of Landau damping
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 437
EP  - 465
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a7/
LA  - en
ID  - SM_1986_55_2_a7
ER  - 
%0 Journal Article
%A V. P. Maslov
%A M. V. Fedoryuk
%T The linear theory of Landau damping
%J Sbornik. Mathematics
%D 1986
%P 437-465
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a7/
%G en
%F SM_1986_55_2_a7
V. P. Maslov; M. V. Fedoryuk. The linear theory of Landau damping. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 437-465. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a7/

[1] Vlasov A. A., “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8 (1938), 291 | Zbl

[2] Lifshits E. M., Pitaevskii L. P., Teoreticheskaya fizika, t. 10. Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[3] Kadomtsev B. B., Kollektivnye yavleniya v plazme, Nauka, M., 1976 | MR

[4] Stiks T., Teoriya plazmennykh voln, Atomizdat, M., 1965 | MR

[5] Cooper J., “Galerkin approximation for the one-dimensional Vlasov–Poisson equation”, Math. Meth. in the Appl. Sci., 5 (1983), 516–532 | DOI | MR

[6] Cooper J., Klimas A., “Boundary Value problems for the Vlasov–Maxwell equation in one dimension”, J. Math. Anal. Appl., 75 (1980), 306–329 | DOI | MR | Zbl

[7] Bernstein I. B., Greene J. M., Kruskal M. D., “Exast nonlinear plasma oscillations”, Physical review, 108:3 (1957), 546–551 | DOI

[8] Maslov V. P., “Uravneniya samosoglasovannogo polya”, Itogi nauki i tekhniki. Sovremennye problemy matem., 11, VINITI, M., 1978, 153–234

[9] Karasev M. V., Maslov V. P., “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II. Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matem., 13, VINITI, M., 1979, 145–267 | MR

[10] Landau L. D., “O kolebaniyakh elektronnoi plazmy”, ZhETF, 16 (1946), 574–586 | MR | Zbl

[11] Kon Dzh. Dzh., Nirenberg L., “Algebra psevdodifferentsialnykh operatorov”, Psevdodifferentsialnye operatory, Mir, M., 1967 | MR

[12] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[13] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1982 | MR

[14] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[15] Degond P., “Apparition de resonances pour l'equation de Vlasov–Poisson linéarisée”, C. R. Acad. Sci. Paris, Ser. I, 286 (1983), 969–972 | MR