On varieties of quasiregular algebras
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 415-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algebra $R$ is called quasiregular if it is a group $R(\circ)$ with respect to the adjoint multiplication $x\circ y=x+y-xy$. The construction of algebras of adjoint fractions is applied to the characterization and construction of certain special varieties of quasiregular algebras. Bibliography: 15 titles.
@article{SM_1986_55_2_a6,
     author = {V. A. Andrunakievich and Yu. M. Ryabukhin},
     title = {On~varieties of quasiregular algebras},
     journal = {Sbornik. Mathematics},
     pages = {415--436},
     year = {1986},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/}
}
TY  - JOUR
AU  - V. A. Andrunakievich
AU  - Yu. M. Ryabukhin
TI  - On varieties of quasiregular algebras
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 415
EP  - 436
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/
LA  - en
ID  - SM_1986_55_2_a6
ER  - 
%0 Journal Article
%A V. A. Andrunakievich
%A Yu. M. Ryabukhin
%T On varieties of quasiregular algebras
%J Sbornik. Mathematics
%D 1986
%P 415-436
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/
%G en
%F SM_1986_55_2_a6
V. A. Andrunakievich; Yu. M. Ryabukhin. On varieties of quasiregular algebras. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 415-436. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/

[1] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl

[2] Cohn P. M., “Free radical rings”, Rings, Modules and Radicals, 6, Colloguia Mathematica Sosietaties Janos Bolyai, 1973, 135–147 | MR

[3] Kurosh A. G., Lektsii po obschei algebre, Fizmatgiz, M., 1962 | MR

[4] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[5] Kemer A. R., “Tozhdestva Kapelli i nilpotentnost radikala konechnoporozhdennoi $PY$-algebry”, DAN SSSR, 225:4 (1980), 793–797 | MR

[6] Razmyslov Yu. P., “O radikale Dzhekobsona v $PI$-algebrakh”, Algebra i logika, 1974, no. 3, 337–360 | MR | Zbl

[7] Broun A., “The radical in finitely generated $PI$-algebras”, Bull. Amer. Math. Soc., 7:2 (1982), 385–387 | DOI | MR

[8] Andrunakievich V. A., “Poluradikalnye koltsa”, Izv. AN SSSR. Ser. matem., 12 (1948), 129–178 | Zbl

[9] Kon P. M., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[10] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[11] Rowen L. H., Polynomial identities in Ring theory, Academic Press, New York, London, Toronto, 1980 | MR | Zbl

[12] Kublanovskii S. I., Lokalno finitno approksimiruemye i lokalno predstavimye mnogoobraziya assotsiativnykh kolets i algebr, Rukopis dep. v VINITI 14.12.82, No 6143–82 Dep., Leningrad, gos. ped. in-t, L., 1982

[13] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[14] Gerasimov V. N., “Obraschayuschie gomomorfizmy kolets”, Algebra i logika, 18:6 (1979), 648–663 | MR | Zbl

[15] Valitskaya A. I., “Otsutstvie konechnogo bazisa kvazitozhdestv dlya kvazimnogoobraziya kolets, vlozhimykh v radikalnye”, Algebra i logika, 21:1 (1982), 13–26 | MR