On~varieties of quasiregular algebras
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 415-436

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebra $R$ is called quasiregular if it is a group $R(\circ)$ with respect to the adjoint multiplication $x\circ y=x+y-xy$. The construction of algebras of adjoint fractions is applied to the characterization and construction of certain special varieties of quasiregular algebras. Bibliography: 15 titles.
@article{SM_1986_55_2_a6,
     author = {V. A. Andrunakievich and Yu. M. Ryabukhin},
     title = {On~varieties of quasiregular algebras},
     journal = {Sbornik. Mathematics},
     pages = {415--436},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/}
}
TY  - JOUR
AU  - V. A. Andrunakievich
AU  - Yu. M. Ryabukhin
TI  - On~varieties of quasiregular algebras
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 415
EP  - 436
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/
LA  - en
ID  - SM_1986_55_2_a6
ER  - 
%0 Journal Article
%A V. A. Andrunakievich
%A Yu. M. Ryabukhin
%T On~varieties of quasiregular algebras
%J Sbornik. Mathematics
%D 1986
%P 415-436
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/
%G en
%F SM_1986_55_2_a6
V. A. Andrunakievich; Yu. M. Ryabukhin. On~varieties of quasiregular algebras. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 415-436. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/