On~varieties of quasiregular algebras
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 415-436
Voir la notice de l'article provenant de la source Math-Net.Ru
An algebra $R$ is called quasiregular if it is a group $R(\circ)$ with respect to the adjoint multiplication $x\circ y=x+y-xy$. The construction of algebras of adjoint fractions is applied to the characterization and construction of certain special varieties of quasiregular algebras.
Bibliography: 15 titles.
@article{SM_1986_55_2_a6,
author = {V. A. Andrunakievich and Yu. M. Ryabukhin},
title = {On~varieties of quasiregular algebras},
journal = {Sbornik. Mathematics},
pages = {415--436},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/}
}
V. A. Andrunakievich; Yu. M. Ryabukhin. On~varieties of quasiregular algebras. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 415-436. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a6/