Identities in the universal enveloping algebra for a~Lie superalgebra
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 383-396

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers Lie superalgebras $L$ over a field of characteristic zero whose universal enveloping algebra $U(L)$ is a $PI$-algebra. Such algebras may be described as follows: the even component $L_0$ of $L$ is Abelian and the odd component $L_1$ contains an $L_0$-submodule $M$ of finite codimension such that the subspace $[L_0, M]$ is finite-dimensional. Bibliography: 13 titles.
@article{SM_1986_55_2_a4,
     author = {Yu. A. Bahturin},
     title = {Identities in the universal enveloping algebra for {a~Lie} superalgebra},
     journal = {Sbornik. Mathematics},
     pages = {383--396},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Bahturin
TI  - Identities in the universal enveloping algebra for a~Lie superalgebra
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 383
EP  - 396
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/
LA  - en
ID  - SM_1986_55_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Bahturin
%T Identities in the universal enveloping algebra for a~Lie superalgebra
%J Sbornik. Mathematics
%D 1986
%P 383-396
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/
%G en
%F SM_1986_55_2_a4
Yu. A. Bahturin. Identities in the universal enveloping algebra for a~Lie superalgebra. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 383-396. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/