Identities in the universal enveloping algebra for a~Lie superalgebra
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 383-396
Voir la notice de l'article provenant de la source Math-Net.Ru
The author considers Lie superalgebras $L$ over a field of characteristic zero whose universal enveloping algebra $U(L)$ is a $PI$-algebra. Such algebras may be described as follows: the even component $L_0$ of $L$ is Abelian and the odd component $L_1$ contains an $L_0$-submodule $M$ of finite codimension such that the subspace $[L_0, M]$ is finite-dimensional.
Bibliography: 13 titles.
@article{SM_1986_55_2_a4,
author = {Yu. A. Bahturin},
title = {Identities in the universal enveloping algebra for {a~Lie} superalgebra},
journal = {Sbornik. Mathematics},
pages = {383--396},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/}
}
Yu. A. Bahturin. Identities in the universal enveloping algebra for a~Lie superalgebra. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 383-396. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/