Identities in the universal enveloping algebra for a Lie superalgebra
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 383-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers Lie superalgebras $L$ over a field of characteristic zero whose universal enveloping algebra $U(L)$ is a $PI$-algebra. Such algebras may be described as follows: the even component $L_0$ of $L$ is Abelian and the odd component $L_1$ contains an $L_0$-submodule $M$ of finite codimension such that the subspace $[L_0, M]$ is finite-dimensional. Bibliography: 13 titles.
@article{SM_1986_55_2_a4,
     author = {Yu. A. Bahturin},
     title = {Identities in the universal enveloping algebra for {a~Lie} superalgebra},
     journal = {Sbornik. Mathematics},
     pages = {383--396},
     year = {1986},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Bahturin
TI  - Identities in the universal enveloping algebra for a Lie superalgebra
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 383
EP  - 396
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/
LA  - en
ID  - SM_1986_55_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Bahturin
%T Identities in the universal enveloping algebra for a Lie superalgebra
%J Sbornik. Mathematics
%D 1986
%P 383-396
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/
%G en
%F SM_1986_55_2_a4
Yu. A. Bahturin. Identities in the universal enveloping algebra for a Lie superalgebra. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 383-396. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a4/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR

[3] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[4] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[5] Latyshev V. N., “Dva zamechaniya o $PI$-algebrakh”, Sib. matem. zhurn., 4 (1963), 1120–1121 | Zbl

[6] Leng S., Algebra, Mir, M., 1968

[7] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[8] Bahturin Ju. A., “A remark on irreducible representations of Lie algebras”, J. Austral. Math. Soc., 27 (1979), 332–336 | DOI | MR | Zbl

[9] Bahturin Ju. A., “Identities in the universal envelopes of Lie algebras”, J. Austral. Math. Soc., 18 (1974), 19–27 | MR

[10] Leron U., Vapne A., “Polynomial identities of related rings”, Isr. J. Math., 8 (1970), 127–137 | DOI | MR | Zbl

[11] Neumann P. M., “An improved bound for $BFC$-growps”, J. Austral. Math. Soc., 11 (1970), 19–27 | DOI | MR | Zbl

[12] Procesi C., Small L., “Endomorphisrn rings of modules over PI-algebras”, Math. Z., 106 (1968), 178–180 | DOI | MR | Zbl

[13] Scheunert M., “The theory of Lie superalgebras”, Lect. Notes Math., 716, Springer-Verlag, Berlin, 1979 | MR | Zbl