On~embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 351-381

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are obtained for embedding the function classes $H_p^{\omega_1,\dots,\omega_\nu}$, with given majorants of partial $L_p$-moduli of continuity, in the space $L_q([0,1]^\nu)$ ($1\leqslant p$). In particular, for Lipschitz classes $H_p^{\delta^{\alpha_1},\dots,\delta^{\alpha_\nu}}$ ($0\alpha_i\leqslant1$) a criterion is obtained for embedding in $L_q$ with limit exponent $q=\frac p{1-\overline\alpha p}$, where $\overline\alpha=\bigl(\frac1{\alpha_1}+\dots+\frac1{\alpha_\nu}\bigr)^{-1}$. Bibliography: 13 titles.
@article{SM_1986_55_2_a3,
     author = {V. I. Kolyada},
     title = {On~embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes},
     journal = {Sbornik. Mathematics},
     pages = {351--381},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a3/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - On~embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 351
EP  - 381
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a3/
LA  - en
ID  - SM_1986_55_2_a3
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T On~embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes
%J Sbornik. Mathematics
%D 1986
%P 351-381
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a3/
%G en
%F SM_1986_55_2_a3
V. I. Kolyada. On~embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 351-381. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a3/