On the limit behavior of the largest eigenvalue of an elliptic operator with a small parameter
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 529-545 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of the largest eigenvalue of a differential operator with a small parameter is studied. Figures: 1. Bibliography: 10 titles.
@article{SM_1986_55_2_a13,
     author = {V. V. Sarafyan},
     title = {On~the limit behavior of the largest eigenvalue of an elliptic operator with a~small parameter},
     journal = {Sbornik. Mathematics},
     pages = {529--545},
     year = {1986},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a13/}
}
TY  - JOUR
AU  - V. V. Sarafyan
TI  - On the limit behavior of the largest eigenvalue of an elliptic operator with a small parameter
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 529
EP  - 545
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a13/
LA  - en
ID  - SM_1986_55_2_a13
ER  - 
%0 Journal Article
%A V. V. Sarafyan
%T On the limit behavior of the largest eigenvalue of an elliptic operator with a small parameter
%J Sbornik. Mathematics
%D 1986
%P 529-545
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a13/
%G en
%F SM_1986_55_2_a13
V. V. Sarafyan. On the limit behavior of the largest eigenvalue of an elliptic operator with a small parameter. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 529-545. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a13/

[1] Venttsel A. D., “Ob asimptotike pervogo sobstvennogo znacheniya differentsialnogo operatora s malym parametrom pri starshikh proizvodnykh”, Teoriya veroyatnostei i ee primeneniya, 20:3 (1975), 610–613 | MR | Zbl

[2] Venttsel A. D., “Formuly dlya sobstvennykh funktsii i mer, svyazannykh s markovskim protsessom”, Teoriya veroyatnostei i ee primeneniya, 18:1 (1973), 3–28 | MR | Zbl

[3] Devinatz A., Ellis R., Friedman A., “The asymptotic behavior of the first real eigenvalue of the second elliptic operator with a small parameter in the higher derivatives. II”, Jindiana Univ. Math. J., 1973/74, 991–1011 | MR

[4] Khille E., Filips R. S., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[5] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR

[6] Khasminskii R. Z., “O polozhitelnykh resheniyakh uravneniya”, Teoriya veroyatnostei i ee primeneniya, 4:3 (1959), 332–341 | Zbl

[7] Sarafyan V. V., “Ob asimptotike pervogo sobstvennogo znacheniya ellipticheskogo operatora s malym parametrom”, DAN ArmSSR. Ser. matem., LXXV (1982), 99–102 | MR

[8] Parch L., “Ob ergodicheskoi teoreme dlya markovskikh protsessov s konechnym vremenem zhizni”, Teoriya veroyatnostei i ee primeneniya, 16:4 (1971), 711–714

[9] Kondington E. A., Levinson I., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[10] Copson E. T., An introduction to the theory of functions of a complex variable, New York, 1935 | Zbl