On~the divergence of Lagrange interpolation processes on sets of the second category
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 511-528

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\omega$ is a real nondecreasing semiadditive function, continuous on $[0;1]$, such that $\omega(0)=0$ and $\varlimsup_{n\to\infty}\omega\bigl(\frac1n\bigr)\ln n>0$, then for every matrix of interpolation knots on $[0;1]$ there are a function $f$, continuous on $[0;1]$, whose modulus of continuity $\omega(f,\delta)=O\{\omega(\delta)\}$, and a set $\mathscr E$ of second category on $[0;1]$ such that the Lagrange interpolation process for $f$ diverges everywhere on $\mathscr E$. Bibliography: 10 titles.
@article{SM_1986_55_2_a12,
     author = {Al. A. Privalov},
     title = {On~the divergence of {Lagrange} interpolation processes on sets of the second category},
     journal = {Sbornik. Mathematics},
     pages = {511--528},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a12/}
}
TY  - JOUR
AU  - Al. A. Privalov
TI  - On~the divergence of Lagrange interpolation processes on sets of the second category
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 511
EP  - 528
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a12/
LA  - en
ID  - SM_1986_55_2_a12
ER  - 
%0 Journal Article
%A Al. A. Privalov
%T On~the divergence of Lagrange interpolation processes on sets of the second category
%J Sbornik. Mathematics
%D 1986
%P 511-528
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a12/
%G en
%F SM_1986_55_2_a12
Al. A. Privalov. On~the divergence of Lagrange interpolation processes on sets of the second category. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 511-528. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a12/