On~the divergence of Lagrange interpolation processes on sets of the second category
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 511-528
Voir la notice de l'article provenant de la source Math-Net.Ru
If $\omega$ is a real nondecreasing semiadditive function, continuous on $[0;1]$, such that $\omega(0)=0$ and $\varlimsup_{n\to\infty}\omega\bigl(\frac1n\bigr)\ln n>0$, then for every matrix of interpolation knots on $[0;1]$ there are a function $f$, continuous on $[0;1]$, whose modulus of continuity $\omega(f,\delta)=O\{\omega(\delta)\}$, and a set $\mathscr E$ of second category on $[0;1]$ such that the Lagrange interpolation process for $f$ diverges everywhere on $\mathscr E$.
Bibliography: 10 titles.
@article{SM_1986_55_2_a12,
author = {Al. A. Privalov},
title = {On~the divergence of {Lagrange} interpolation processes on sets of the second category},
journal = {Sbornik. Mathematics},
pages = {511--528},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a12/}
}
Al. A. Privalov. On~the divergence of Lagrange interpolation processes on sets of the second category. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 511-528. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a12/