Second-order elliptic equations on graphs
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 493-509 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers an undirected graph $G$ which, generally speaking, is infinite but has a finite number of edges issuing from each vertex. To each edge $[x,y]$ of the graph there is assigned a positive number $ r_{[x,y]}$ – its “resistance”. A real-valued function $u$ defined on the vertices of $G$ is called elliptic if for each vertex $x\in G$ the following condition holds: $$ Lu(x)=\sum_{[x,y]\in G}\frac{u(y)-u(x)}{r_{[x,y]}}=0. $$ It is shown that under certain conditions on the graph and the resistance of its edges elliptic functions behave like solutions of second-order uniformly elliptic equations of divergence form without lower-order terms on $\mathbf{R}^n$. In particular, analogues of Harnack's inequality and Liouville's theorem hold for them. The concept of a fundamental solution of the operator $L$ is introduced, and some conditions for the existence of a positive fundamental solution of the operator $L$ on the graph $G$ are given. Figures: 1. Bibliography: 2 titles.
@article{SM_1986_55_2_a11,
     author = {A. B. Merkov},
     title = {Second-order elliptic equations on graphs},
     journal = {Sbornik. Mathematics},
     pages = {493--509},
     year = {1986},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a11/}
}
TY  - JOUR
AU  - A. B. Merkov
TI  - Second-order elliptic equations on graphs
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 493
EP  - 509
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a11/
LA  - en
ID  - SM_1986_55_2_a11
ER  - 
%0 Journal Article
%A A. B. Merkov
%T Second-order elliptic equations on graphs
%J Sbornik. Mathematics
%D 1986
%P 493-509
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a11/
%G en
%F SM_1986_55_2_a11
A. B. Merkov. Second-order elliptic equations on graphs. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 493-509. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a11/

[1] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[2] Grigoryan A. A., O svoistvakh garmonicheskikh funktsii na mnogoobraziyakh, Dis. ... kand. fiz.-matem. nauk, MGU., M., 1982