Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 309-333
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Certain aspects of the theory of second order elliptic partial differential operators are considered: $(L^p,L^q)$-estimates for powers of the resolvents, and the integralness and smoothness of certain linear spaces generated by solutions of such equations. Applications are given to the first spectral question. One of the main results is global criteria for essential selfadjointness in the presence of simultaneous growth at infinity of the coefficients determining the equation.
Bibliography: 21 titles.
			
            
            
            
          
        
      @article{SM_1986_55_2_a1,
     author = {Yu. A. Semenov},
     title = {Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients},
     journal = {Sbornik. Mathematics},
     pages = {309--333},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/}
}
                      
                      
                    TY  - JOUR
AU  - Yu. A. Semenov
TI  - Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 309
EP  - 333
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
LA  - en
ID  - SM_1986_55_2_a1
ER  - 
                      
                      
                    %0 Journal Article
%A Yu. A. Semenov
%T Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
%J Sbornik. Mathematics
%D 1986
%P 309-333
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
%G en
%F SM_1986_55_2_a1
                      
                      
                    Yu. A. Semenov. Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 309-333. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
                  
                