Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 309-333 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain aspects of the theory of second order elliptic partial differential operators are considered: $(L^p,L^q)$-estimates for powers of the resolvents, and the integralness and smoothness of certain linear spaces generated by solutions of such equations. Applications are given to the first spectral question. One of the main results is global criteria for essential selfadjointness in the presence of simultaneous growth at infinity of the coefficients determining the equation. Bibliography: 21 titles.
@article{SM_1986_55_2_a1,
     author = {Yu. A. Semenov},
     title = {Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients},
     journal = {Sbornik. Mathematics},
     pages = {309--333},
     year = {1986},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/}
}
TY  - JOUR
AU  - Yu. A. Semenov
TI  - Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 309
EP  - 333
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
LA  - en
ID  - SM_1986_55_2_a1
ER  - 
%0 Journal Article
%A Yu. A. Semenov
%T Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
%J Sbornik. Mathematics
%D 1986
%P 309-333
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
%G en
%F SM_1986_55_2_a1
Yu. A. Semenov. Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 309-333. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Simon B., “A canonical decomposition for quadratic forms with applications to monotone convergence theorems”, J. Funct. Analysis, 28:3 (1978), 377–385 | DOI | MR | Zbl

[3] Simon B., “Lower semicontinuity of positive quadratic forms”, Proc. Roy. Soc. Edinburgh A, 79:3–4 (1978), 267–273 | MR

[4] Semenov Yu. L., “Gladkost obobschennykh reshenii uravneniya $\bigl(\lambda-\sum_{i,j}\nabla_ia_{ij}\nabla_j\bigr)u=f$ s nepreryvnymi koeffitsientami”, Matem. sb., 118(160) (1982), 399–410 | MR | Zbl

[5] Stampacchia G., Equations elliptiques du second ordere a coefficients discontinuus, Seminaires de Math. Superieures, Les Presses de L'Universite de Montreal, Montreal, 1965 | MR

[6] Talenti G., “Elliptic equations and rearrangements”, Ann. Scuola Norm. Sup. Pisa, 3:4 (1976), 697–718 | MR | Zbl

[7] Mazya V. G., “Nekotorye otsenki dlya reshenii ellipticheskikh uravnenii vtorogo poryadka”, DAN SSSR, 317:5 (1961), 1057–1059

[8] Trudinger N., “Linear elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 265–308 | MR | Zbl

[9] Kovalenko V. F., Semenov Yu. A., “Nekotorye voprosy razlozheniya po o. s. f. operatora Shredingera”, UMN, 33:4 (1978), 107–140 | MR | Zbl

[10] Meyers N., “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Scuola Norm. Sup. Pisa, 17:3 (1963), 189–206 | MR | Zbl

[11] Miranda C., “Sur problem misto per le equazioni lineari ellittiche”, Ann. Mat. Pure et Appl., 39 (1955), 279–303 | DOI | MR | Zbl

[12] Koshelev A. I., “Ob ogranichennosti v $L_p$ proizvodnykh reshenii ellipticheskikh differentsialnykh uravnenii”, Matem. sb., 38(80):3 (1956), 359–372 | MR | Zbl

[13] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[14] Kato T., “Remarks en the selfadjointness and related problems for differential operators”, Spectral Theory of Differential Operators, North-Holland Publishing Company, 1981, 253–266 | MR | Zbl

[15] Wienholtz E., “Halbbeschrankte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus”, Math. Ann., 135 (1958), 50–80 | DOI | MR | Zbl

[16] Perelmuter M. A., Semenov Yu. A., “O konechnosti skorosti rasprostraneniya vozmuschenii dlya giperbolicheskikh uravnenii”, Ukr. matem. zhurn., 36:1 (1984), 56–63 | MR | Zbl

[17] Povzner A. Ya., “O razlozhenii proizvolnykh funktsii po sobstvennym funktsiyam operatora – $\Delta u+cu$”, Matem. sb., 74(116) (1953), 109–156 | MR | Zbl

[18] Simader C., “Essential self-adjointness of Schrödinger operators bounded from below”, Math. Z., 159:1 (1978), 47–50 | DOI | MR | Zbl

[19] Oročko Yu. B., “Self-adjontness of the minimal Schrödinger operator with potential belonging to $L_{1,\operatorname{loc}}$”, Repts. Math. Phys., 15:2 (1979), 12–20

[20] Orochko Yu. B., “Gladkaya approksimatsiya samosopryazhennykh differentsialnykh operatorov divergentnogo vida s izmerimymi koeffitsientami”, Matem. sb., 109(151) (1979), 418–431 | MR | Zbl

[21] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR