@article{SM_1986_55_2_a1,
author = {Yu. A. Semenov},
title = {Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients},
journal = {Sbornik. Mathematics},
pages = {309--333},
year = {1986},
volume = {55},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/}
}
TY - JOUR
AU - Yu. A. Semenov
TI - Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
JO - Sbornik. Mathematics
PY - 1986
SP - 309
EP - 333
VL - 55
IS - 2
UR - http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
LA - en
ID - SM_1986_55_2_a1
ER -
%0 Journal Article
%A Yu. A. Semenov
%T Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients
%J Sbornik. Mathematics
%D 1986
%P 309-333
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
%G en
%F SM_1986_55_2_a1
Yu. A. Semenov. Smoothness of generalized solutions of the equation $\widehat Hu=f$ and essential selfadjointness of the operator $\widehat H=-\sum_{i,j}\nabla_i a_{ij}\nabla_j+V$ with measurable coefficients. Sbornik. Mathematics, Tome 55 (1986) no. 2, pp. 309-333. http://geodesic.mathdoc.fr/item/SM_1986_55_2_a1/
[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[2] Simon B., “A canonical decomposition for quadratic forms with applications to monotone convergence theorems”, J. Funct. Analysis, 28:3 (1978), 377–385 | DOI | MR | Zbl
[3] Simon B., “Lower semicontinuity of positive quadratic forms”, Proc. Roy. Soc. Edinburgh A, 79:3–4 (1978), 267–273 | MR
[4] Semenov Yu. L., “Gladkost obobschennykh reshenii uravneniya $\bigl(\lambda-\sum_{i,j}\nabla_ia_{ij}\nabla_j\bigr)u=f$ s nepreryvnymi koeffitsientami”, Matem. sb., 118(160) (1982), 399–410 | MR | Zbl
[5] Stampacchia G., Equations elliptiques du second ordere a coefficients discontinuus, Seminaires de Math. Superieures, Les Presses de L'Universite de Montreal, Montreal, 1965 | MR
[6] Talenti G., “Elliptic equations and rearrangements”, Ann. Scuola Norm. Sup. Pisa, 3:4 (1976), 697–718 | MR | Zbl
[7] Mazya V. G., “Nekotorye otsenki dlya reshenii ellipticheskikh uravnenii vtorogo poryadka”, DAN SSSR, 317:5 (1961), 1057–1059
[8] Trudinger N., “Linear elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 265–308 | MR | Zbl
[9] Kovalenko V. F., Semenov Yu. A., “Nekotorye voprosy razlozheniya po o. s. f. operatora Shredingera”, UMN, 33:4 (1978), 107–140 | MR | Zbl
[10] Meyers N., “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Scuola Norm. Sup. Pisa, 17:3 (1963), 189–206 | MR | Zbl
[11] Miranda C., “Sur problem misto per le equazioni lineari ellittiche”, Ann. Mat. Pure et Appl., 39 (1955), 279–303 | DOI | MR | Zbl
[12] Koshelev A. I., “Ob ogranichennosti v $L_p$ proizvodnykh reshenii ellipticheskikh differentsialnykh uravnenii”, Matem. sb., 38(80):3 (1956), 359–372 | MR | Zbl
[13] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[14] Kato T., “Remarks en the selfadjointness and related problems for differential operators”, Spectral Theory of Differential Operators, North-Holland Publishing Company, 1981, 253–266 | MR | Zbl
[15] Wienholtz E., “Halbbeschrankte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus”, Math. Ann., 135 (1958), 50–80 | DOI | MR | Zbl
[16] Perelmuter M. A., Semenov Yu. A., “O konechnosti skorosti rasprostraneniya vozmuschenii dlya giperbolicheskikh uravnenii”, Ukr. matem. zhurn., 36:1 (1984), 56–63 | MR | Zbl
[17] Povzner A. Ya., “O razlozhenii proizvolnykh funktsii po sobstvennym funktsiyam operatora – $\Delta u+cu$”, Matem. sb., 74(116) (1953), 109–156 | MR | Zbl
[18] Simader C., “Essential self-adjointness of Schrödinger operators bounded from below”, Math. Z., 159:1 (1978), 47–50 | DOI | MR | Zbl
[19] Oročko Yu. B., “Self-adjontness of the minimal Schrödinger operator with potential belonging to $L_{1,\operatorname{loc}}$”, Repts. Math. Phys., 15:2 (1979), 12–20
[20] Orochko Yu. B., “Gladkaya approksimatsiya samosopryazhennykh differentsialnykh operatorov divergentnogo vida s izmerimymi koeffitsientami”, Matem. sb., 109(151) (1979), 418–431 | MR | Zbl
[21] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR